Как строить эпюр

iSopromat.ru

Построение эпюр

Примеры решения задач на построение эпюр в сопротивлении материалов, строительной и технической механике со всеми расчетами, подробными пояснениями и видеоуроками.

Здесь рассмотрены примеры и порядок расчета значений внутренних силовых факторов, напряжений и перемещений и построения по ним эпюр для всех видов нагружения балок, стержней и валов.

Примеры построения эпюр

При растяжении-сжатии

Примеры построения эпюр внутренних продольных сил, нормальных напряжений и линейных перемещений для стержней при их растяжении и сжатии.

При кручении

Примеры построения эпюр внутренних крутящих моментов и угловых перемещений сечений вала при кручении.

Построение эпюр при изгибе

Примеры построения эпюр внутренних поперечных сил и изгибающих моментов, нормальных и касательных напряжений для балок и рам при изгибе.

Эпюры внутренних силовых факторов

  • эпюры поперечных сил и изгибающих моментов
  • эпюра внутренних поперечных сил
  • эпюра внутренних изгибающих моментов балки
  • построение эпюр для рамы
  • Проверка эпюр внутренних силовых факторов в рамах

Эпюры напряжений

  • эпюра нормальных напряжений двутавра
  • эпюра касательных напряжений для двутавра
  • эпюра нормальных напряжений прямоугольного сечения

Наш плейлист с видеоуроками построения эпюр внутренних силовых факторов, напряжений и перемещений для балки:

Порядок построения эпюр

В рассмотренных выше примерах для построения эпюр выполняется следующая последовательность действий:

  1. Вычерчивается (в масштабе) расчетная схема элемента с указанием всех размеров и приложенных внешних нагрузок; Расчетная схема балки
  2. Обозначаются характерные сечения бруса;
  3. Определяются опорные реакции; Опорные реакции балки
  4. Рассматриваемый элемент разбивается на силовые участки; Обозначение силовых участков
  5. Для каждого силового участка выбирается рассматриваемая часть бруса (балки) Выбранная часть балки и записываются выражения для рассчитываемых внутренних силовых факторов, напряжений или перемещений; Выражения для расчета поперечной силы в сечении балки
  6. Рассчитываются значения на границах участков. В случаях, когда переменная в выражении имеет вторую или более степень можно дополнительно определить значение в середине участка;
  7. В некоторых случаях необходимо определять экстремумы эпюр;
  8. После расчета всех значений выполняется построение эпюр. Эпюры поперечных сил и изгибающих моментов для балки

После построения эпюр желательно выполнять их проверку.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Построение эпюр продольных сил — формулы, условия и примеры решения задач

Построение эпюр продольных сил – это решение статически определимой задачи. Производится для выявления картины нагрузки упругого тела. Вернее, уточнения ее схематизации.

Необходимо для определения наиболее напряженного, так называемого «опасного» сечения. Затем методами сопромата (сопротивления материалов) проводится анализ с прогнозированием перемещений элементов конструкции.

Но всему свое время. Сначала немного о терминах.

Основные понятия

Брусом (балкой) называют тело, вытянутое вдоль оси. То есть длина преобладает над шириной и высотой.

Если имеются только осевые (продольные) силы, то объект подвергается растяжению/сжатию. В этом случае в материале возникают только нормальные поперечному сечению силы противодействия и тело считают стержнем.

Статическая определимость подразумевает достаточность схемы для установления внутренних усилий противодействия. Участок – часть балки с неизменным сечением и характерной нагрузкой.

Правила построения учитывают знаки усилий. Растягивающие принимают положительными, сжимающие – отрицательными.

В системе СИ силы измеряются в ньютонах (Н). Длины в метрах (м).

Что такое эпюра продольных сил

Показывает, какой силой (в нашем предположении нормальной) загружен каждый участок. По всей длине стержня. Иначе говоря, эпюра – наглядное графическое изображение изменения нагрузки по всей длине конструкции.

Как построить эпюру продольных сил

Используется метод сечений. Балка виртуально рассекается на каждом участке и ищется противодействующая N. Ведь задача статическая.

Сопротивление рассчитывается по формуле:

Fl – действующие на участке l силы (Н);

ql – распределенные нагрузки (Н/м).

Порядок построения:

1. Рисуется схема балки и механизмов закрепления;

2. Производится разделение на участки;

3. Для каждого рассчитывается N с учетом знаков. Если у балки есть незакрепленный конец, то начинать удобнее именно с него. В противном случае считается реакция опор. И оптимальнее выбирать сечение с меньшим количеством действующих факторов:

Нетрудно заметить, что последнее уравнение дает еще и реакцию опоры;

4. Параллельно оси стержня намечается база эпюры. Положительные значения масштабировано проставляются выше, отрицательные – ниже. Эпюру наглядно совмещать с расчетной схемой. Итоговый результат и промежуточные сечения показаны на рис. 1.

Рис. 1. Эпюра продольных сил

Проверить эпюру можно по скачкам: изменения происходят в точках приложения сил на их величину.

Пример построения эпюр и решения задач

Построить эпюру сил для следующего случая (рис. 2):

Разбиение на участке вполне очевидно. Найдем сопротивление на выделенных:

Распределенная нагрузка зависит от длины, на которой приложена. Поскольку нарастает линейно, значение N2 будет постепенно увеличиваться/уменьшаться в зависимости от знака q.

Эпюра такого вида усилия представляет собой прямоугольный треугольник с катетами l3 и ql3 (в масштабе). Поскольку распределение линейно.

По полученным данным строим эпюру (рис. 3).

Заключение

Приведенный алгоритм является предварительным этапом в расчете модели на прочность. «Слабое» место находится уже с учетом площади поперечного сечения.

В сети имеются онлайн сервисы для помощи в расчетах при вычерчивании. Но стоит ли ими пользоваться, если процедура настолько проста? Если не запутаться в знаках, конечно. Это самая распространенная ошибка.

Построение эпюр

Вы будете перенаправлены на Автор24

Эпюра — это графическое изображение нагрузок и напряжений по всей длине бруса, используемое для визуального анализа напряженности, а также распределения нагрузок по всей длине бруса.

Эпюру можно построить на основании следующих параметров: внутренних сил (продольных и поперечных), крутящих и изгибающих моментов, напряжений (нормальных и касательных) и перемещений.

Процесс построения эпюр

Процесс построения эпюры стандартизирован и осуществляется по определенным правилам. Это сделано для общего понимания графиков всеми участниками производственного процесса.

Сначала строится нулевая линия. С левой стороны от линии пишется символическое название эпюры: $N$ — продольные силы, $Q$ — поперечные силы, $Mиз$ — изгибающие моменты, $T$ или $Mкр$ — вращающие момент, $σ$ и $τ$ — нормальное и касательное напряжения. Название сопровождается единицей измерения в соответствии с параметром (наименованием эпюры), например, $МПа$ — мегапаскаль.

Затем определяются границы силовых участков, то есть таких участков, где силовой фактор (деформация) остается постоянным или изменяется в рамках одной закономерности. Зачастую, границы силовых участков представляют собой сечения с приложенной внешней нагрузкой. Обозначение границ на эпюре реализуется в виде тонких вертикальных линий.

Если брус обладает сложной объемной формой, то границы определяют аналитически.

Далее эпюра масштабируется. Масштаб выбирается в соответствии с предварительным просчетом отображаемого фактора по всем контрольным сечениям (КС) бруса.

После выбора масштаба и построения внешнего контура эпюры КС присваиваются значения фактора без указания знака (“$+$” и “$–$”). Факторы с положительными значениями чертятся над нулевой линией, а с отрицательными под.

В области с положительными значениями на самом широком участке пишется знак “$+$” и обводится кружком, а с отрицательными выполняется также операция, но указывается знак “$–$”. Можно поставить знаки справа и слева от “$0$”, при этом кружками они обводится не будут.

Читайте также  Как сделать гиперссылку на сайте

Готовые работы на аналогичную тему

Определение знака фактора

Знак фактора определяется направлением внутренних силовых факторов и действием деформации. Например, нагрузке продольного типа, направленной на сжатие присваивается знак “$–$”, а на растяжение “$+$”.

Если вращение “отсеченной” части бруса осуществляется против часовой стрелки, то крутящий момент будет со знаком “$+$”, а по часовой стрелке знаком “$–$”. При рассмотрении поперечной силы $Q$, смотрим вертикальную плоскость, если она направлена вниз, то знак “$–$” (вверх “$+$”), а также учитываем поворот балки по часовой “$+$” и против часовой “$–$” .

Пример построения

Построим эпюры для простой двухоппорной балки с распределенной нагрузкой и действующей силой $F$=$10 кН$ и длиной $8$ $м$.

Начертим расчетную схему и укажем все нагрузки и значения:

Рисунок 1. Расчетная схема двухопорной балки. Автор24 — интернет-биржа студенческих работ

Определим реакции опор ($R$) в данном случае реакция для каждой точки будет равна половине приложенной, силы, так части балки равны по длине (нагрузка распределена).

Рисунок 2. Реакции опор $Ra$ и $Rb$. Автор24 — интернет-биржа студенческих работ

Обозначаем границы участков балки.

Рисунок 3. Границы участков балки. Автор24 — интернет-биржа студенческих работ

На первом участке отметим произвольное сечение и назовем его буквой $D$. Оно расположено на расстоянии $z1$ от левого торца балки. Относительно этого сечения записываем законы, описывающие изменения поперечных сил и изгибающих моментов, в рамках участка.

Рисунок 4. Произвольное сечение D. Автор24 — интернет-биржа студенческих работ

Запишем уравнение для поперечной силы. Поворот реакции $Ra$ выполняется по часовой стрелке, поэтому уравнение имеет вид:

$Qy_1 = Ra = 10 кН$

Обозначим границы, указав значение поперечной силы на графике, и начертим эпюру.

Рисунок 5. Эпюра поперечной силы. Автор24 — интернет-биржа студенческих работ

Запишем уравнение для изгибающего момента. В данном случае момент силы направлен на растяжение, поэтому укажем знак “$+$”, поэтому уравнение имеет вид:

Из уравнения видно, что изменения изгибающего момента будут происходить, в соответствии с линейным законом, и зависеть от координаты $z_1$.

Изображение эпюров со стороны растянутых волокон (показано в примере) характерно для инженерно-строительной практики. В механике эпюра чертится со стороны сжатых волокон.

Рассчитаем эпюру этого участка, подставив в уравнение координаты $z_1 = 0$ (начало участка) и $z_2 = 4$ (конец участка), а затем построим ее.

$Mx_1(z_1 = 0) = Ra • z_1 = 5 • 0 = 0$

$Mx_1 (z_1 = 4) = Ra • z_1 = 5 • 4 = 20$

Рисунок 6. Эпюра изгибающего момента. Автор24 — интернет-биржа студенческих работ

Выполним расчеты для второго участка балки:

$Qy_2 = – Rb = –10 кН$

$Mx_2 (z_2 = 0) = Rb • z_2 = 5 • 0 = 0$

$Mx_2 (z_2 = 4) = Rb • z_2 = 5 • 4 = 20$

Начертим окончательную версию эпюры.

Рисунок 7. Полноценная эпюра рассматриваемой балки. Автор24 — интернет-биржа студенческих работ

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи

Виктория Валерьевна Колесникова

Эксперт по предмету «Сопротивление материалов»

Техническая механика

Сопротивление материалов

Построение эпюр в сопромате

Прикладное значение науки сопротивление материалов заключается в возможности определения основных критериев работоспособности деталей машин и различных конструкций – прочности, деформации и устойчивости.
Применяя метод сечений в сочетании с приемами статики и других разделов прикладной механики, можно определить напряжения, возникающие в том или ином сечении бруса (детали, элемента конструкции), и, исходя из анализа полученного результата, сделать выводы о работоспособности этого бруса при приложении к нему расчетных нагрузок.
Именно напряжение является основным фактором, влияющим на прочностные характеристики элемента конструкции, а также его способность противостоять деформации. По этой причине в сопромате главной задачей, чаще всего, является определение напряжений, возникающих в том или ином сечении детали или элемента конструкции.

Для удобства анализа напряженности отдельных участков и сечений конструкции (бруса) используют графическое изображение нагрузок и напряжений в каждом сечении. Это позволяет визуально анализировать распределение нагрузок и напряжений по всей длине бруса, определять при этом наиболее нагруженные (критические) участки и сечения. Такие графические изображения нагрузок, напряжений, а также деформаций элементов конструкций называют эпюрами.

При анализе степени напряженности и деформирования элемента конструкции (детали, бруса) наиболее часто производят построение следующих типов эпюр:

  • эпюры внутренних сил (продольных или поперечных), действующих в сечениях бруса;
  • эпюры вращающих (крутящих) моментов;
  • эпюры изгибающих моментов;
  • эпюры напряжений (нормальных или касательных);
  • эпюры перемещений (удлинений, укорочений, прогибов и т. п.).

Иногда на одной эпюре показываются несколько внутренних силовых факторов (эпюра продольных и поперечных сил, эпюра изгибающего и вращающего моментов), но такие эпюры при сложных нагрузках и переменных сечениях бруса сложны для чтения.

Как упоминалось выше, наиболее важную информацию о прочностных характеристиках элемента конструкции (бруса), т. е. способности противостоять разрушению, можно получить, используя эпюры напряжений, а информацию о степени деформации под действием расчетной нагрузки – по эпюрам перемещений.
Эпюры внутренних усилий и моментов в большинстве случаев не дают полной информации о степени напряженности и деформирования отдельных сечений и участков бруса, а являются промежуточным звеном при построении эпюр напряжений и перемещений, особенно если брус имеет ступенчатую форму или переменное поперечное сечение по длине.

Правила построения эпюр

При построении эпюр придерживаются определенных стандартных правил, позволяющих одинаково читать, истолковывать и анализировать эпюру всем участникам процесса конструирования изделия.

Построение эпюры начинают с изображения нулевой линии, которая символизирует линию бруса в ненапряженном состоянии. При этом, если брус имеет сложную пространственную форму, нулевая линия эпюры повторяет контуры центральной (осевой) линии бруса, и имеет такую же пространственную форму.

Нулевую линию эпюры обозначают названием и нулевым символом. Слева от нулевой линии указывается название эпюры (эпюра сил, моментов, напряжений и т. п.), справа от нулевой линии ставится цифра « 0 ». При указании называния эпюры обычно используют символ изображаемой нагрузки, например, внутренние продольные силы чаще всего обозначаются буквой « N », поперечные – буквой « Q », эпюры изгибающих моментов – буквами « Mиз », эпюры вращающих моментов – буквами « Т » или « Mкр », эпюры напряжений – буквами « σ » или « τ » и т. п. Рядом с буквенным названием эпюры (или под ним) указывается единица измерения (ньютон, мегапаскаль, мм и т. п.).

Следующий этап построения эпюры – определение границ силовых участков бруса, т. е. таких участков, где внутренний силовой фактор в сечениях или деформация бруса изменяются по одной закономерности (или остаются постоянными). Как правило, границами силовых участков являются сечения, где приложена внешняя нагрузка или (и) площадь поперечного сечения бруса изменяется. В некоторых случаях, при построении эпюр брусьев сложной объемной формы, границы участков определяют аналитически. Границы силовых участков обозначаются тонкими вертикальными линиями, проведенными от изображения бруса через все эпюры.

Для оптимальной наглядности графика эпюры важно правильно выбрать масштаб изображаемого силового фактора, напряжения или деформации. Если масштаб окажется слишком мелким – эпюра будет трудна для чтения и анализа, если слишком крупным – она займет много места на чертеже.
Если учесть, что для одного бруса выполняют, как правило, несколько эпюр, расположенных одна под другой, то крупный масштаб не позволит выполнить построение эпюр на одном листе.
Для правильного выбора масштаба эпюры предварительно следует просчитать значение отображаемого фактора по всем контрольным сечениям бруса, и после этого определиться с масштабом.
Если, например, в результате расчетов окажется, что вся эпюра займет положительную область (над нулевой линией), то при построении графика эпюры это следует учесть.

Читайте также  Как снизить нагрузку на процессор

Положительные значения фактора откладываются вверх от нулевой линии, отрицательные – вниз. Если на каком-либо участке силовой фактор равен нулю, эпюра совпадает с нулевой линией по всей длине этого участка. После построение внешнего контура эпюры на контрольных сечениях проставляются значения фактора (обычно на внешних углах эпюры), при этом знак фактора (плюс или минус) не указываются.
На положительной области (в самой широкой части) ставится знак «+» в кружке, а на отрицательной области – знак «» в кружке (см. примеры построения эпюр). Иногда знаки «+» и «» на эпюре указываются сверху и снизу цифры « 0 » (справа нулевой линии), тогда на площади графика эпюры эти знаки (в кружках) не ставятся.

По окончании построения эпюры по ее площади проводят тонкие вертикальные линии через равные промежутки. Эти линии символизируют сечения бруса. Иногда, в случае построения сложной пространственной эпюры, линии выполняют не вертикально, а в соответствии с проекционным направлением участка на графике эпюры.

Определение знака фактора на эпюре

При построении эпюр внутренних силовых факторов или деформаций необходимо правильно определять знак фактора на данном силовом участке бруса. Для этого следует пользоваться следующими общепринятыми правилами:

  • сжимающая продольная нагрузка считается отрицательной, растягивающая – положительной;
  • поперечная сила Q , направленная вниз считается отрицательной, вверх – положительной;
  • вращающий (крутящий) момент считается положительным, если он вращает «отсеченную» часть бруса против часовой стрелки, отрицательным – по часовой;
  • эпюра изгибающих моментов строится в соответствии с «правилом дождя». Это правило используется следующим образом: если в результате деформации от изгибающего момента исследуемое сечение прогнулось вниз, значит, эпюра имеет положительное значение (образовалась «воронка», в которой может задерживаться «дождевая вода»); если же балка прогнулась вверх, то эпюра имеет отрицательное значение («вода» будет скатываться с балки). Более подробно о знаках эпюр поперечных сил и изгибающих моментов здесь.

Особенности построения эпюр поперечных сил и изгибающих моментов

Для облегчения построения эпюр и контроля правильности графика следует запомнить ряд правил, вытекающих из теоремы Журавского:

На участке, где равномерно распределенная нагрузка q отсутствует, эпюра поперечных сил Q представляет собой прямую линию, параллельную нулевой линии (оси бруса), а эпюра изгибающих моментов Mиз – наклонную прямую.

В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть ступенчатый скачок на величину этой силы, а на эпюре Mиз – излом (изменение направления графика).

На участке действия равномерно распределенной нагрузки q эпюра Q представляет собой наклонную прямую, а эпюра Mиз – параболу, обращенную выпуклостью навстречу стрелкам, изображающим направление распределенной нагрузки.

Если эпюра Q на наклонном участке в каком-либо сечении пересекает нулевую линию эпюры, то в этом сечении на эпюре изгибающих моментов Mиз будет иметь экстремальное значение (минимальное или максимальное).

Если на границе действия распределенной нагрузки нет сосредоточенных сил, то наклонный участок эпюры Q соединяется с горизонтальным без «ступеньки», а параболический участок эпюры Mиз соединяется с наклонным участком плавно, без излома.

В сечениях, где к брусу приложены сосредоченные пары сил, на эпюре Mиз будут иметь место ступенчатые скачки на величину действующих внешних моментов, а эпюра Q изменения не претерпевает (приложенные к брусу изгибающие моменты не влияют на эпюру поперечных сил).

Примеры построения эпюр

Материалы раздела «Сопротивление материалов»:

Методика построения эпюр изгибающих моментов, поперечных и продольных сил

1. Виды опорных закреплений

С технической точки зрения опорные закрепления конструкций весьма разнообразны. При решении задач сопромата, все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижнаяопора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление, или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил N z

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной — в противном случае.

Пример 1.Построить эпюру продольных сил для жестко защемленной балки (рис.2).

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные — под осью.

3. Построение эпюр крутящих моментов М кр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр: условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным — в противном случае.

Пример 2.Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр N z и М кр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) — прямая, параллельная оси, а на участке под распределенной нагрузкой — наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Q y и изгибающих моментов M x в балках

Стержень, работающий на изгиб, называется балкой. В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора — поперечная сила Qy и изгибающий момент Mx .

Читайте также  Как разделить счета по оплате квартиры

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной — в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной — в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3.Построить эпюры Qy и Mx (рис.4).

1. Намечаем характерные сечения.

2. Определяем поперечную силу Qy в каждом характерном сечении.

По вычисленным значениям строим эпюру Qy.

3. Определяем изгибающий момент Mx в каждом характерном сечении.

По вычисленным значениям строим эпюру Mx, причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.

7. Балки на двух опорах

В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция.

Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:

Пример 4. Построить эпюры Qy, Mx для балки с шарнирным опиранием (рис.5).

1. Вычисляем реакции опор.

2. Намечаем характерные сечения.

В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.

3. Определяем поперечные силы в характерных сечениях.

Строим эпюру Qy.

4. Определяем изгибающие моменты в характерных сечениях.

Строим эпюру Mx.

8. Правила контроля эпюр Q у и M x

Дифференциальные зависимости между q, Qy, Mx определяют ряд закономерностей, которым подчиняются эпюры Qy и Mx.

Эпюра Qy является прямолинейной на всех участках; эпюра Mx — криволинейная (квадратная парабола) на участке под равномерно распределенной нагрузкой, причем, выпуклость кривой всегда обращена навстречу нагрузке q, и прямолинейная на всех остальных участках.

Под точкой приложения сосредоточенной силы (реакции) на эпюре Qy обязательно должен быть скачок на величину этой силы (реакции). Аналогично, под точкой приложения сосредоточенного момента на эпюре Mx обязателен скачок на величину момента.

Если на участке под распределенной нагрузкой эпюра Qy пересекает ось (Qy=0), то эпюра Mx в этом сечении имеет экстремум.

На участках с поперечной силой одного знака эпюра Mx имеет одинаковую монотонность. Так, при Qy>0 эпюра Mx возрастает слева направо; при Qy

Построение эпюр

Построение эпюр поперечных сил и изгибающих моментов — это то, с чем непременно столкнётся каждый расчётчик в своей работе, потому имеет смысл посвятить этой процедуре целый урок. Далее будет показана пара примеров построения и даны задачи для проверки.

Задача 1. Построить эпюры поперечных сил и изгибающих моментов консольной балки, показанной на рисунке ниже

1. Опора заменяется своими реакциями на балку:

2. Необходимо найти реакции опор:

Знак «-» показывает, что направление опорного момента на расчётной схеме должно быть в обратную сторону.

3. Необходимо найти функциональные зависимости Q и M в зависимости от координаты для всей балки. Для этого балка должна быть поделена на участки. Это один из немногих примеров, когда имеется лишь один участок, т.е. как и Q(x), так и M(x) описываются одной функцией по длине балки.

4. Строятся эпюры. Для более аккуратного построения можно использовать возможности программы MS Excel:

Задача 2. Построить эпюры поперечных сил и изгибающих моментов шарнирно-опёртой балки с консолью, показанной на рисунке ниже

1. Опоры заменяются своими реакциями на балку:

2. Необходимо найти реакции опор:

Для нахождения реакции YA воспользуемся третьим уравнением статики (сумма моментов относительно опоры B), а второе, более простое, уравнение (сумма сил относительно оси игрек) используем для проверки:

Реакции найдены верно.

3. Необходимо найти функциональные зависимости Q и M в зависимости от координаты для всей балки.

Для этого балка должна быть поделена на участки.

4. Строятся эпюры

Проанализировав расчётную схему и полученные эпюры, можно заметить, что сосредоточенные силы и реакции вызывают скачки на эпюре Q, а сосредоточенный момент вызывает скачок на эпюре M.

Задача 3. Построить эпюры поперечных сил и изгибающих моментов для шарнирно опёртой балки с двумя консолями, показанной на рисунке ниже

1. Опоры заменяются своими реакциями на балку. Так как в задаче отсутствуют внешние осевые силы, то и осевая реакция в неподвижном шарнире будет равна нулю.

2. Необходимо найти реакции опор

Подставим числовые значения:

Для нахождения YA воспользуемся третьим уравнение статики (сумма моментов относительно опоры B), а второе, более простое, уравнение (сумма сил относительно оси игрек) используем для проверки:

Подставим числовые значения:

Реакции найдены верно.

3. Необходимо найти функции поперечной силы Q и изгибающего момента M в зависимости от координаты для всей балки.

Для этого балка поделена на участки.

4. Строятся эпюры:

Можно обратить внимание, что на втором участке от 500 мм до 2500 мм поперечная сила равна нулю, а изгибающий момент не изменяется. Это – случай чистого изгиба. При чистом изгибе в поперечных сечениях балки действуют только нормальные напряжения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: