Как составить уравнение плоскости через точку и прямую

Уравнение плоскости, которая проходит через заданную прямую и заданную точку.

В этой статье собрана информация, необходимая для решения задачи составления уравнения плоскости, проходящей через заданную прямую и заданную точку. После решения этой задачи в общем виде мы приведем развернутые решения примеров на составление уравнения плоскости, которая проходит через заданную прямую и точку.

Навигация по странице.

  • Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.
  • Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.

Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана прямая a и точка , не лежащая на прямой a . Поставим перед собой задачу: получить уравнение плоскости , проходящей через прямую a и точку М3 .

Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.

Напомним две аксиомы:

  • через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;
  • если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Из этих утверждений следует, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Таким образом, в поставленной нами задаче через прямую a и точку M3 проходит единственная плоскость , и нам требуется написать уравнение этой плоскости.

Теперь приступим к нахождению уравнения плоскости, проходящей через заданную прямую a и точку .

Если прямая a задана через указание координат двух различных точек М1 и М2 , лежащих на ней, то наша задача сводится к нахождению уравнения плоскости, проходящей через три заданные точки М1 , М2 и М3 .

Если же прямая a задана иначе, то нам сначала придется найти координаты двух точек М1 и М2 , лежащих на прямой a , а уже после этого записать уравнение плоскости, проходящей через три точки М1 , М2 и М3 , которое и будет искомым уравнением плоскости, проходящей через прямую a и точку М3 .

Разберемся, как найти координаты двух различных точек М1 и М2 , лежащих на заданной прямой a .

В прямоугольной системе координат в пространстве любой прямой линии соответствуют некоторые уравнения прямой в пространстве. Будем считать, что способ задания прямой a в условии задачи позволяет получить ее параметрические уравнения прямой в пространстве вида . Тогда, приняв , имеем точку , лежащую на прямой a . Придав параметру отличное от нуля действительное значение, из параметрических уравнений прямой a мы сможем вычислить координаты точки М2 , также лежащей на прямой a и отличной от точки М1 .

После этого нам останется лишь написать уравнение плоскости, проходящей через три различных и не лежащих на одной прямой точки и , в виде .

Итак, мы получили уравнение плоскости, проходящей через заданную прямую a и заданную точку М3 , не лежащую на прямой a .

Примеры составления уравнения плоскости, проходящей через заданную точку и прямую.

Покажем решения нескольких примеров, в которых разберем рассмотренный метод нахождения уравнения плоскости, проходящей через заданную прямую и заданную точку.

Начнем с самого простого случая.

Напишите общее уравнение плоскости, которая проходит через координатную прямую Ox и точку .

Возьмем на координатной прямой Ox две различные точки, например, и .

Теперь получим уравнение плоскости, проходящей через три точки М1 , М2 и М3 :

Это уравнение является искомым общим уравнением плоскости, проходящей через заданную прямую Ox и точку .

.

Если известно, что плоскость проходит через заданную точку и заданную прямую, и требуется написать уравнение плоскости в отрезках или нормальное уравнение плоскости, то следует сначала получить общее уравнение заданной плоскости, а от него переходить к уравнению плоскости требуемого вида.

Составьте нормальное уравнение плоскости, которая проходит через прямую и точку .

Сначала напишем общее уравнение заданной плоскости. Для этого найдем координаты двух различных точек, лежащих на прямой . Параметрические уравнения этой прямой имеют вид . Пусть точка М1 соответствует значению , а точка М2. Вычисляем координаты точек М1 и М2 :

Теперь мы можем составить общее уравнение прямой, проходящей через точку и прямую :

Осталось получить требуемый вид уравнения плоскости, умножив обе части полученного уравнения на нормирующий множитель .

.

Итак, нахождение уравнения плоскости, проходящей через заданную точку и заданную прямую, упирается в нахождение координат двух различных точек, лежащих на заданной прямой. В этом часто состоит основная сложность при решении подобных задач. В заключении разберем решение примера на составление уравнения плоскости, проходящей через заданную точку и прямую, которую определяют уравнения двух пересекающихся плоскостей.

В прямоугольной системе координат Oxyz задана точка и прямая a , которая является линией пересечения двух плоскостей и . Напишите уравнение плоскости, проходящей через прямую a и точку М3 .

Отталкиваясь от заданных уравнений двух пересекающихся плоскостей и , получим параметрические уравнения прямой a , чтобы найти координаты двух точек М1 и М2 , лежащих на прямой a . После этого напишем требуемое уравнение плоскости, проходящей через точку М3 и прямую a , как уравнение плоскости, проходящей через три точки М1 , М2 и М3 .

Процесс перехода от уравнений двух плоскостей, пересекающихся по прямой a , к параметрическим уравнениям прямой a подробно описан в статье уравнения прямой – уравнения двух пересекающихся плоскостей. Не будем на этом подробно останавливаться, а запишем лишь итоговый результат . При получаем точку , при — точку .

Таким образом, уравнение плоскости, проходящей через точку и прямую , имеет вид

.

Уравнение плоскости, проходящей через точку и прямую онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:

. (1)

и точка M(x, y, z), которая не находится на этой прямой.

Задача заключается в построении уравнения плоскости α, проходящей через точку M и и через прямую L(Рис.1).

Решение. Уравнение плоскости, проходящей через точку M и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx)+B(yy)+C(zz)=0. (2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0. (3)

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am+Bp+Cl=0 (4)

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x)+B(y1y)+C(z1z)=0. (5)

Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:

. (6)

Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.

Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.

Пример 1. Найти уравнение плоскости α, проходящей через точку M(x, y, z)=M(1, 2, 5) и через заданную прямую L:

(7)

Решение. Уравнение плоскости α, проходящей через точку M(x, y, z)=M(1, 2, 5) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Уравнение плоскости α, проходящей через точку M1(x1, y1, z1)=M1(2, 1, −3) и имеющий нормальный вектор n=<A, B, C> представляется формулой (3).

Вычитая уравнение (3) из уравнения (2), получим:

A(x1x)+B(y1y)+C(z1z)=0. (8)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n=<A, B, C> должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Am+Bp+Cl=0 (9)
Читайте также  Как разминировать бомбу в cs 16

Подставим значения m, p, l, x, y, z, x1, y1, z1 в (8) и (9):

(10)
(11)

Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

(12)

Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:

(13)

Упростим уравнение (13):

(14)

Ответ: Уравнение плоскости, проходящей через точку M(1, 2, 5) и через прямую (7) имеет вид (14).

Пример 2. Найти уравнение плоскости α, проходящую через точку M(4, 3, −6) и через прямую L, заданной параметрическим уравнением:

(15)

Решение. Приведем параметрическое уравнение (15) к каноническому виду:

(16)

Уравнение плоскости α, проходящей через точку M(x, y, z) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx)+B(yy)+C(zz)=0. (17)

Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

A(xx1)+B(yy1)+C(zz1)=0. (18)

Вычитая уравнение (18) из уравнения (17), получим:

A(x1x)+B(y1y)+C(z1z)=0. (19)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :

Am+Bp+Cl=0. (20)

Подставим значения m, p, l, x, y, z, x1, y1, z1 в (19) и (20):

(21)
(22)

Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

(23)

Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:

(24)

Упростим уравнение (24):

(25)

Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.

(26)

Ответ: Уравнение плоскости, проходящей через точку M(4, 3, −6) и через прямую (16) имеет вид (26).

Решение задач по математике онлайн

Этот калькулятор онлайн составляет (находит) уравнение плоскости по трем точкам, лежащим на плоскости или по нормали и одной точке лежащей на плоскости.

Онлайн калькулятор для нахождения уравнения плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac<2> <3>)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac<5> <7>)

Составить уравнение плоскости

Немного теории.

Общее уравнение плоскости

Пусть заданы:
прямоугольная система координат Oxyz,
произвольная плоскость ( pi );
точка ( M_0(x_0;y_0;z_0) in pi );
вектор ( vec(A;B;C) ), перпендикулярный плоскости ( pi ) (смотри рисунок).

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости ( pi ) тогда и только тогда, когда векторы ( vec ) и ( vec ) взаимно перпендикулярны. Так как координаты вектора ( vec ) равны ( x-x_0, ; y-y_0, ; z-z_0 ) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости ( pi ) тогда и только тогда, когда

Раскрывая скобки, приведем уравнение (1) к виду
( Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0 )
Далее, обозначая число ( -Ax_0-By_0-Cz_0 ) через ( D ), получаем

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение ( Ax+By+Cz+D=0 ) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение ( x_0, ; y_0, ; z_0 ) ( если, например, ( C neq 0 ), то, взяв произвольные х, и y, из уравнения получим: ( z_0 = -fracx_0 — fracy_0-frac ) ).

Таким образом, существует хотя бы одна точка M(x; y; z), координаты которой удовлетворяют уравнению, т.е. Ax+By+Cz+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x) + B(y-y) + C(z-z) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость ( pi ), проходящую через точку M(x и перпендикулярную вектору ( vec(A;B;C) ).

Вектор ( vec(A;B;C) ), перпендикулярный плоскости, называется нормальным вектором или нормалью этой плоскости.

Теорема
Если два уравнения ( A_1x+B_1y+C_1z+D_1=0 ) и ( A_2x+B_2y+C_2z+D_2=0 ) определяют одну и ту же плоскость, то их коэффициенты пропорциональны, т.е. $$ frac = frac = frac = frac $$

Угол между двумя плоскостями

Рассмотрим две плоскости ( pi_1 ), и ( pi_2 ), заданные соответственно уравнениями

При любом расположении плоскостей ( pi_1 ), и ( pi_2 ) в пространстве один из углов ( varphi ) между ними равен углу между их нормалями ( vec(A_1;B_1;C_1) ) и ( vec(A_2;B_2;C_2) ) и вычисляется по следующей формуле:
$$ cos varphi = frac < veccdot vec>< |vec| |vec| > = frac ; sqrt > tag <3>$$

Второй угол равен ( 180^circ -cos varphi )

Условие параллельности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) параллельны, то коллинеарны их нормали ( vec ) и ( vec ), и наоборот. Но тогда
$$ frac = frac = frac tag <4>$$
Условие (4) является условием параллельности плоскостей ( pi_1 ) и ( pi_2 )

Условие перпендикулярности плоскостей

Если плоскости ( pi_1 ) и ( pi_2 ) взаимно перпендикулярны, то их нормали ( vec ) и ( vec ) также перпендикулярны, и наоборот. Поэтому из формулы (3) непосредственно получаем условие перпендикулярности плоскостей ( pi_1 ) и ( pi_2 ):
( A_1 A_2 + B_1 B_2 + C_1 C_2 = 0 )

Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой

Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.

Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой

Пусть задано трехмерное пространство и прямоугольная система координат O x y z в нем. Заданы также точка М 1 ( x 1 , y 1 , z 1 ) , прямая a и плоскость α , проходящая через точку М 1 перпендикулярно прямой a . Необходимо записать уравнение плоскости α .

Прежде чем приступить к решению этой задачи, вспомним теорему геометрии из программы 10 — 11 классов, которая гласит:

Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.

Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.

Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.

Условием задачи нам заданы координаты x 1 , y 1 , z 1 точки М 1 , через которую проходит плоскость α . Если мы определим координаты нормального вектора плоскости α , то получим возможность записать искомое уравнение.

Нормальным вектором плоскости α , так как он ненулевой и лежит на прямой a , перпендикулярной плоскости α , будет являться любой направляющий вектор прямой a . Так, задача нахождения координат нормального вектора плоскости α преобразовывается в задачу определения координат направляющего вектора прямой a .

Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида

x — x 1 a x = y — y 1 a y = z — z 1 a z

или параметрическими уравнениями вида:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Читайте также  Как перекодировать дверной замок

то направляющий вектор прямой будет иметь координаты а x , а y и а z . В случае, когда прямая a представлена двумя точками М 2 ( x 2 , y 2 , z 2 ) и М 3 ( x 3 , y 3 , z 3 ) , то координаты направляющего вектора буду определяться как (x3 – x2, y3 – y2, z3 – z2).

Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:

— определяем координаты направляющего вектора прямой a : a → = ( а x , а y , а z ) ;

— определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a :

n → = ( A , B , C ) , где A = a x , B = a y , C = a z ;

— записываем уравнение плоскости, проходящей через точку М 1 ( x 1 , y 1 , z 1 ) и имеющей нормальный вектор n → = ( A , B , C ) в виде A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 . Это и будет являться требуемым уравнением плоскости, которая проходит через заданную точку пространства и перпендикулярна к данной прямой.

Полученное общее уравнение плоскости: A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.

Решим несколько примеров, используя полученный выше алгоритм.

Задана точка М 1 ( 3 , — 4 , 5 ) , через которую проходит плоскость, и эта плоскость перпендикулярна координатной прямой О z .

Решение

направляющим вектором координатной прямой O z будет координатный вектор k ⇀ = ( 0 , 0 , 1 ) . Следовательно, нормальный вектор плоскости имеет координаты ( 0 , 0 , 1 ) . Запишем уравнение плоскости, проходящей через заданную точку М 1 ( 3 , — 4 , 5 ) , нормальный вектор которой имеет координаты ( 0 , 0 , 1 ) :

A ( x — x 1 ) + B ( y — y 1 ) + C ( z — z 1 ) = 0 ⇔ ⇔ 0 · ( x — 3 ) + 0 · ( y — ( — 4 ) ) + 1 · ( z — 5 ) = 0 ⇔ z — 5 = 0

Ответ: z – 5 = 0 .

Рассмотрим еще один способ решить данную задачу:

Плоскость, которая перпендикулярна прямой O z будет задана неполным общим уравнением плоскости вида С z + D = 0 , C ≠ 0 . Определим значения C и D : такие, при которых плоскость проходит через заданную точку. Подставим координаты этой точки в уравнение С z + D = 0 , получим: С · 5 + D = 0 . Т.е. числа, C и D связаны соотношением — D C = 5 . Приняв С = 1 , получим D = — 5 .

Подставим эти значения в уравнение С z + D = 0 и получим требуемое уравнение плоскости, перпендикулярной к прямой O z и проходящей через точку М 1 ( 3 , — 4 , 5 ) .

Оно будет иметь вид: z – 5 = 0 .

Ответ: z – 5 = 0 .

Составьте уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x — 3 = y + 1 — 7 = z + 5 2

Решение

Опираясь на условия задачи, можно утверждать, что за нормальный вектор n → заданной плоскости можно принять направляющий вектор заданной прямой. Таким, образом: n → = ( — 3 , — 7 , 2 ) . Запишем уравнение плоскости, проходящей через точку О ( 0 , 0 , 0 ) и имеющей нормальный вектор n → = ( — 3 , — 7 , 2 ) :

— 3 · ( x — 0 ) — 7 · ( y — 0 ) + 2 · ( z — 0 ) = 0 ⇔ — 3 x — 7 y + 2 z = 0

Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.

Ответ: — 3 x — 7 y + 2 z = 0

Задана прямоугольная система координат O x y z в трехмерном пространстве, в ней – две точки А ( 2 , — 1 , — 2 ) и B ( 3 , — 2 , 4 ) . Плоскость α проходит через точку A перпендикулярно прямой А В . Необходимо составить уравнение плоскости α в отрезках.

Решение

Плоскость α перпендикулярна к прямой А В , тогда вектор А В → будет нормальным вектором плоскости α . Координаты этого вектора определяются как разности соответствующих координат точек В ( 3 , — 2 , 4 ) и А ( 2 , — 1 , — 2 ) :

A B → = ( 3 — 2 , — 2 — ( — 1 ) , 4 — ( — 2 ) ) ⇔ A B → = ( 1 , — 1 , 6 )

Общее уравнение плоскости будет записано в следующем виде:

1 · x — 2 — 1 · y — ( — 1 + 6 · ( z — ( — 2 ) ) = 0 ⇔ x — y + 6 z + 9 = 0

Теперь составим искомое уравнение плоскости в отрезках:

x — y + 6 z + 9 = 0 ⇔ x — y + 6 z = — 9 ⇔ x — 9 + y 9 + z — 3 2 = 1

Ответ: x — 9 + y 9 + z — 3 2 = 1

Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.

Задана прямоугольная система координат O x y z , в ней – точка М 1 ( 2 , 0 , — 5 ) . Заданы также уравнения двух плоскостей 3 x + 2 y + 1 = 0 и x + 2 z – 1 = 0 , которые пересекаются по прямой a . Необходимо составить уравнение плоскости, проходящей через точку М 1 перпендикулярно к прямой a .

Решение

Определим координаты направляющего вектора прямой a . Он перпендикулярен как нормальному вектору n 1 → ( 3 , 2 , 0 ) плоскости n → ( 1 , 0 , 2 ) , так и нормальному вектору 3 x + 2 y + 1 = 0 плоскости x + 2 z — 1 = 0 .

Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :

a → = n 1 → × n 2 → = i → j → k → 3 2 0 1 0 2 = 4 · i → — 6 · j → — 2 · k → ⇒ a → = ( 4 , — 6 , — 2 )

Таким образом, вектор n → = ( 4 , — 6 , — 2 ) будет нормальным вектором плоскости, перпендикулярной к прямой a . Запишем искомое уравнение плоскости:

4 · ( x — 2 ) — 6 · ( y — 0 ) — 2 · ( z — ( — 5 ) ) = 0 ⇔ 4 x — 6 y — 2 z — 18 = 0 ⇔ ⇔ 2 x — 3 y — z — 9 = 0

Ответ: 2 x — 3 y — z — 9 = 0

Задача C2: уравнение плоскости через определитель

В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости. Если вы не знаете, что такое определитель, зайдите в первую часть урока — «Матрицы и определители». Иначе вы рискуете ничего не понять в сегодняшнем материале.

Уравнение плоскости по трем точкам

Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:

Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:

Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:

Ax + By + Cz + D = 0

где числа A , B , C и D — коэффициенты, которые, собственно, и требуется найти.

Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ — подставить координаты в уравнение Получится система из трех уравнений, которая легко решается.

Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.

Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием обоснований и доказательств.

Уравнение плоскости через определитель

Хватит лирики, приступаем к делу. Для начала — теорема о том, как связаны определитель матрицы и уравнение плоскости.

Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: Тогда уравнение этой плоскости можно записать через определитель:

Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:

Задача. Составьте уравнение плоскости, проходящей через точки:

Составляем определитель и приравниваем его к нулю:

a = 1 · 1 · ( z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · ( z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (− x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;

Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные шли в правильной последовательности. Вот и все! Уравнение плоскости готово!

Задача. Составьте уравнение плоскости, проходящей через точки:

Сразу подставляем координаты точек в определитель:

Снова раскрываем определитель:

a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − ( x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;

Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, рекомендуется — чтобы упростить дальнейшее решение задачи.

Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель — и все, уравнение готово.

На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит а в какой — Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.

Откуда берется формула с определителем?

Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.

Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:

Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:

Берем любую точку из первой тройки (например, и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:

Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы — и мы получим тот самый определитель, который указан в теореме:

Читайте также  Как построить октаэдр

Эта формула означает, что объем параллелепипеда, построенного на векторах равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка как раз то, что мы искали.

Замена точек и строк определителя

У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2. Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:

Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки в самом верху. Пожалуйста, если вам так удобно:

Некоторых смущает, что в одной из строчек присутствуют переменные которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:

Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:

Ax + By + Cz + D = 0

Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.

Задача. Составьте уравнение плоскости, проходящей через точки:

Итак, рассматриваем 4 точки:

Для начала составим стандартный определитель и приравниваем его к нулю:

a = 0 · 1 · ( z − 1) + 1 · 0 · ( x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · ( x − 1) + 1 · (−1) · ( z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;

Все, мы получили ответ: .

Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными не внизу, а вверху:

Вновь раскрываем полученный определитель:

a = ( x − 1) · 1 · (−1) + ( z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = ( z − 1) · 1 · 0 + y · (−1) · (−1) + ( x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;

Мы получили точно такое же уравнение плоскости: Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.

Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.

В рассмотренной выше задаче мы использовали точку но вполне можно было взять В общем, любую точку с известными координатами, лежащую на искомой плоскости.

Нахождение уравнения плоскости, проходящей через заданную прямую и заданную точку.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана прямая a и точка , не лежащая на прямой a. Поставим перед собой задачу: получить уравнение плоскости , проходящей через прямую a и точку М3.

Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.

Напомним две аксиомы:

через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;

если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Из этих утверждений следует, что через прямую и не лежащую на ней точку можно провести единственную плоскость. Таким образом, в поставленной нами задаче через прямую a и точкуM3 проходит единственная плоскость , и нам требуется написать уравнение этой плоскости.

Теперь приступим к нахождению уравнения плоскости, проходящей через заданную прямую a и точку .

Если прямая a задана через указание координат двух различных точек М1 и М2, лежащих на ней, то наша задача сводится к нахождению уравнения плоскости, проходящей через три заданные точки М1, М2 и М3.

Если же прямая a задана иначе, то нам сначала придется найти координаты двух точек М1 и М2, лежащих на прямой a, а уже после этого записать уравнение плоскости, проходящей через три точки М1, М2 и М3, которое и будет искомым уравнением плоскости, проходящей через прямую aи точку М3.

Разберемся, как найти координаты двух различных точек М1 и М2, лежащих на заданной прямойa.

В прямоугольной системе координат в пространстве любой прямой линии соответствуют некоторые уравнения прямой в пространстве. Будем считать, что способ задания прямой a в условии задачи позволяет получить ее параметрические уравнения прямой в пространстве вида . Тогда, приняв , имеем точку , лежащую на прямой a. Придав параметру отличное от нуля действительное значение, из параметрических уравнений прямой a мы сможем вычислить координаты точки М2, также лежащей на прямой a и отличной от точки М1.

После этого нам останется лишь написать уравнение плоскости, проходящей через три различных и не лежащих на одной прямой точки и , в виде .

Итак, мы получили уравнение плоскости, проходящей через заданную прямую a и заданную точку М3, не лежащую на прямой a.

Нахождение уравнения плоскости, проходящей через две пересекающиеся прямые.

Прежде чем приступать к нахождению уравнения плоскости, проходящей через две заданные пересекающиеся прямые, напомним одну теорему: в трехмерном пространстве через две пересекающиеся прямые проходит единственная плоскость. Это утверждение является следствием из двух аксиом геометрии:

через три различные и не лежащие на одной прямой точки проходит единственная плоскость;

если две несовпадающие точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Таким образом, конкретную плоскость в трехмерном пространстве можно задать, указав две пересекающиеся прямые, лежащие в этой плоскости.

Теперь покажем, что плоскость, проходящая через две заданные пересекающиеся прямые, совпадает с плоскостью, проходящей через три различные точки, две из которых лежат на одной из заданных прямых, а третья – на другой прямой.

Пусть заданные прямые a и b пересекаются в точке М. Отметим на прямой a две различные точки М1 и М2 (одна из них может совпадать с точкой M), а на прямой b точку М3, отличную от точки М. Покажем, что плоскость М1М2М3 есть плоскость, проходящая через заданные пересекающиеся прямые a и b.

Так как в плоскости М1М2М3 лежат две точки прямой a (точки М1 и М2), то из озвученной в начале этого пункта аксиомы следует, что все точки прямой a лежат в плоскости М1М2М3, в частности, точка М. Тогда в плоскости М1М2М3 лежат все точки прямой b, так как две несовпадающие точки прямой b (точки М и М3) лежат в указанной плоскости. Следовательно, плоскость, проходящая через пересекающиеся прямые a и b, и плоскость, проходящая через три точки М1, М2 и М2, совпадают.

Итак, поставим перед собой следующую задачу.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, заданы две пересекающиеся прямые a и b, и требуется написать уравнение плоскости, проходящей через пересекающиеся прямые a и b.

Сведем решение этой задачи к нахождению уравнения плоскости, проходящей через три точки. Для этого нужно определить координаты двух различных точек M1 и M2, лежащих на одной из заданных пересекающихся прямых, и координаты точки M3, лежащей на другой прямой и не являющейся точкой пересечения заданных прямых. Для нахождения координат точек М1, М2 иМ3 все средства хороши. Например, можно получить параметрические уравнения прямой a в пространстве вида . Из них видны координатыточкиМ1 (они получаются при ), а координаты точкиМ2 можно вычислить, придав параметру любое ненулевое действительное значение (к примеру,). После этого можно получить параметрические уравнения прямойb и при некотором значении параметра вычислить координаты точки М3, не забыв удостовериться, что она не является точкой пересечения заданных прямых (что она не лежит на прямой a).

Будем считать, что координаты точек М1, М2 и М3 найдены. После этого мы можем написать уравнение плоскости, проходящей через три точки ив виде. Вычисливопределитель матицы вида , мы получимобщее уравнение плоскости М1М2М3, которое и будет уравнением плоскости, проходящей через две пересекающиеся прямые a и b.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: