Как сложить два вектора

Как складывать векторы

Сложив два вектора, в результате получим новый вектор.
Векторы могут располагаться один относительно другого:

  • параллельно,
  • не параллельно.

Складываем параллельные векторы

Если векторы параллельны, складывать так:

  • А) К концу первого вектора приложить начало второго вектора
  • Б) из начала первого вектора к концу второго вектора провести новый вектор

Примечание:

В этом уравнении над буквами используются значки векторов. Эти значки указывают на то, что действия выполняются с помощью геометрии. То есть, учитывается направление векторов.

Важно! Любое выражение, записанное в векторном виде, учитывает направление векторов.

Это можно пояснить так:

  • сложив два числа 3 и 4 получим только одно решение (3 + 4 = 7).
  • складывая два вектора с длинами 3 и 4, можно в результате получить вектор, длина которого лежит в диапазоне от «1» до «7».
  1. Если векторы, которые складываем, были направлены в противоположные стороны, получим вектор, длина которого равняется единице.
  2. А если векторы были сонаправленными – то длина результирующего вектора будет равна семи.
  3. Ну а, если векторы были препендикулярными, то конечный вектор будет иметь длину, равную пяти.

Если векторы направлены в противоположные стороны, то результат сложения будет сонаправлен с более длинным вектором.

Складываем не параллельные векторы

Если векторы не параллельны (см. рис. ), для их сложения пользуются одним из двух правил:

  1. правило треугольника;
  2. правило параллелограмма;

Примечание:

Правило параллелограмма удобно применять к векторам, выходящим из одной общей точки (начала векторов совмещены).

Правило треугольника

К концу первого вектора приложить начало второго вектора

Из свободного начала к свободному концу провести вектор

Правило параллелограмма

Совместить начала векторов

Провести пунктиры, чтобы получить параллелограмм

Из точки, в которой находятся начала провести диагональ

Как вычитать векторы

Вычтем один вектор из второго вектора. В результате получим новый вектор.

Вектор «( -vec )» — это вектор «( vec )», развернутый в противоположную сторону.

Вычитание заменяют сложением. Складывают вектор с противоположно направленным вектором.

Складываем и вычитаем векторы, используя их координаты

Когда известны координаты двух векторов, сложение или вычитание провести достаточно легко. Для этого нужно сложить или вычесть соответствующие координаты векторов.

Для удобства обычно выписывают один вектор под другим.

( vec = left < b_; b_ ; b_ ;right> )

Примеры сложения векторов в физике

Напоминание:
Складывать и вычитать можно только те векторы, которые имеют одинаковую размерность. То есть, длина которых измеряется в одинаковых единицах.

Рассмотрим формулу связи между начальной и конечной скоростями при равноускоренном движении
( vec = vec> + vec cdot t )

Примечания:
— Скорость всегда направлена в ту сторону, в которую тело движется (в направлении движения тела).
— Ускорение направлено в сторону действия силы (из второго закона Ньютона).

Обратите внимание: Направление силы не всегда будет совпадать с направлением, в котором тело двигалось изначально.

Силу можно направить в любую сторону. Она будет толкать или тянуть тело в ту сторону, в которую она направлена. Поэтому, конечная скорость ( vec ), начальная скорость ( vec> ) и ускорение ( vec ) могут иметь различные направления.

Векторы складывают с помощью геометрии, то есть, учитывают их направления.
Поэтому, формула ( vec = vec> + vec cdot t ) записана в векторном виде.

Векторы: правила сложения и вычитания

Вектор (overrightarrow) можно рассматривать как перемещение точки из положения (A) (начало движения) в положение (B) (конец движения). То есть траектория движения в этом случае не важна, важны только начало и конец!

(blacktriangleright) Два вектора коллинеарны, если они лежат на одной прямой или на двух параллельных прямых.
В противном случае векторы называются неколлинеарными.

(blacktriangleright) Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Если их направления противоположны, то они называются противоположно направленными.

Правила сложения коллинеарных векторов:

(blacktriangleright) Для того, чтобы сложить два сонаправленных вектора, можно отложить второй вектор от конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).

(blacktriangleright) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).

Правила сложения неколлинеарных векторов (overrightarrow ) и (overrightarrow) :

(blacktriangleright) Правило треугольника (рис. 3).

(blacktriangleright) Правило параллелограмма (рис. 4).

Дан прямоугольный треугольник (ABC) с прямым углом (A) , точка (O) – центр описанной около данного треугольника окружности. Координаты вектора (overrightarrow=<1;1>) , (overrightarrow=<-1;1>) . Найдите сумму координат вектора (overrightarrow) .

Т.к. треугольник (ABC) — прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. (O) — середина (BC) .

Заметим, что (overrightarrow=overrightarrow-overrightarrow) , следовательно, (overrightarrow=<-1-1;1-1>=<-2;0>) .

Т.к. (overrightarrow=dfrac12 overrightarrow) , то (overrightarrow=<-1;0>) .

Значит, сумма координат вектора (overrightarrow) равна (-1+0=-1) .

(ABCD) – четырёхугольник, на сторонах которого отложены векторы (overrightarrow) , (overrightarrow) , (overrightarrow) , (overrightarrow) . Найдите длину вектора (overrightarrow + overrightarrow + overrightarrow + overrightarrow) .

(overrightarrow + overrightarrow = overrightarrow) , (overrightarrow + overrightarrow = overrightarrow) , тогда
(overrightarrow + overrightarrow + overrightarrow + overrightarrow = overrightarrow + overrightarrow + overrightarrow= overrightarrow + overrightarrow = overrightarrow — overrightarrow = vec<0>) .
Нулевой вектор имеет длину, равную (0) .

Вектор можно воспринимать как перемещение, тогда (overrightarrow + overrightarrow) – перемещение из (A) в (B) , а затем из (B) в (C) – в итоге это перемещение из (A) в (C) .

При такой трактовке становится очевидным, что (overrightarrow + overrightarrow + overrightarrow + overrightarrow = vec<0>) , ведь в итоге здесь из точки (A) переместились в точку (A) , то есть длина такого перемещения равна (0) , значит, и сам вектор такого перемещения есть (vec<0>) .

[begin overrightarrow = overrightarrow + overrightarrow = frac<1><5>overrightarrow + frac<9><10>overrightarrow = frac<1><5>(overrightarrow + overrightarrow) + frac<9><10>overrightarrow =\ = frac<1><5>(overrightarrow + overrightarrow) + frac<9><10>overrightarrow = frac<1><5>(overrightarrow — overrightarrow) + frac<9><10>overrightarrow = frac<1><5>overrightarrow + frac<7><10>overrightarrow = frac<1><5>vec + frac<7><10>vecend]

(Rightarrow) (x = frac<7><10>) , (y = frac<1><5>) (Rightarrow) (xcdot y = 0,14) .

Отрезки (AD) , (BE) и (CF) пересекаются в точке (O) и делятся этой точкой пополам. (BC parallel AD) и (ABCO) – параллелограмм; (AF parallel BE) и (ABOF) – параллелограмм (Rightarrow) [overrightarrow = overrightarrow = overrightarrow + overrightarrow = overrightarrow + overrightarrow = vec + vec] (Rightarrow) (x = 1) , (y = 1) (Rightarrow) (x + y = 2) .

Старшеклассники, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение достойных баллов, обязательно должны повторить тему «Правила сложения и вычитания нескольких векторов». Как видно из многолетней практики, подобные задания каждый год включаются в аттестационное испытание. Если у выпускника вызывают трудности задачи из раздела «Геометрия на плоскости», к примеру, в которых требуется применить правила сложения и вычитания векторов, ему обязательно стоит повторить или вновь разобраться в материале, чтобы успешно сдать ЕГЭ.

Образовательный проект «Школково» предлагает новый подход в подготовке к аттестационному испытанию. Наш ресурс выстроен таким образом, чтобы учащиеся смогли выявить наиболее сложные для себя разделы и восполнить пробелы в знаниях. Специалисты «Школково» подготовили и систематизировали весь необходимый материал для подготовки к сдаче аттестационного испытания.

Читайте также  Как отклеить пластырь

Для того чтобы задачи ЕГЭ, в которых необходимо применить правила сложения и вычитания двух векторов, не вызывали затруднений, мы рекомендуем прежде всего освежить в памяти базовые понятия. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Если вы уже вспомнили правило вычитания векторов и основные определения по данной теме, предлагаем закрепить полученные знания, выполнив соответствующие упражнения, которые подобрали специалисты образовательного портала «Школково». Для каждой задачи на сайте представлен алгоритм решения и дан правильный ответ. В теме «Правила сложения векторов» представлены различные упражнения; выполнив два-три сравнительно легких задания, учащиеся могут последовательно переходить к более сложным.

Оттачивать собственные навыки по таким, например, заданиям, как задачи на координатной плоскости, школьники имеют возможность в режиме онлайн, находясь в Москве или любом другом городе России. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Сложение векторов

Скаляры можно складывать, умножать и делить так же, как обычные числа.

Поскольку вектор характеризуется не только числовым значение, но и направлением, сложение векторов не подчиняется правилам сложения чисел. Например, пусть длины векторов a = 3 м, b = 4 м, тогда a + b = 3 м + 4 м = 7 м. Но длина вектора (vec c = vec a + vec b) не будет равна 7 м (рис. 1).

Рис. 1.

Для того, чтобы построить вектор (vec c = vec a + vec b) (рис. 2), применяются специальные правила сложения векторов.

Рис. 2.

А длину вектора суммы (vec c = vec a + vec b) определяют по теореме косинусов (c = sqrt), где (alpha,) – угол между векторами (vec a) и (vec b).

Правило треугольника

В зарубежной литературе этот метод называют «хвост к голове».

Для того чтобы сложить два вектора (vec a) и (vec b) (рис. 3, а) нужно переместить вектор (vec b) параллельно самому себе так, чтобы его начало совпадало с концом вектора (vec a) (рис. 3, б). Тогда их суммой будет вектор (vec c), начало которого совпадает с началом вектора (vec a), а конец — с концом вектора (vec b) (рис. 3, в).

а б в Рис. 3.

Результат не поменяется, если перемещать вместо вектора (vec b) вектор (vec a) (рис. 4), т.е. (vec b + vec a = vec a + vec b) (свойство коммутативности векторов).

а б в Рис. 4. vector-treug-1.swf «Правило треугольников» Пример 1 Увеличить Flash vector-treug-2.swf «Правило треугольников» Пример 2 Увеличить Flash Рис. 5.

При помощи правила треугольника можно сложить два параллельных вектора (vec a) и (vec b) (рис. 6, а) и (vec a) и (vec d) (рис. 7, а). Суммы этих векторов (vec c = vec a + vec b) и (vec f = vec a + vec d) изображены на рис. 6, б и 7, б. Причем, модули векторов (c = a + b) и (f=left|a-dright|).

а б Рис. 6. а б Рис. 7.

Правило треугольника можно применять при сложении трех и более векторов. Например, (vec c = vec a_1 + vec a_2 +vec a_3 +vec a_4) (рис. 8).

Рис. 8.

Правило параллелограмма

Для того чтобы сложить два вектора (vec a) и (vec b) (рис. 9, а) нужно переместить их параллельно самим себе так, чтобы начала векторов (vec a) и (vec b) находились в одной точке (рис. 9, б). Затем построить параллелограмм, сторонами которого будут эти вектора (рис. 9, в). Тогда суммой (vec a+ vec b) будет вектор (vec c), начало которого совпадает с общим началом векторов, а конец — с противоположной вершиной параллелограмма (рис. 9, г).

а б в г Рис. 9. vector-paral-1.swf «Правило параллепипеда» Увеличить Flash Рис. 10.

Вычитание векторов

Для того чтобы найти разность двух векторов (vec a) и (vec b) (рис. 11) нужно найти вектор (vec c = vec a + left(-vec b right)) (см. Умножение вектора на скаляр) по правилу треугольника (рис. 12) или по правилу параллелограмма (рис. 13).

Рис. 11 а б в Рис. 12. а б б в Рис. 13.

Операции с векторами

Как сложить и перемножить векторы (и зачем).

Мы постепенно показываем вам математику за пределами школьной программы. Начинали со знакомства с векторами, теперь сделаем следующий шаг.

Напомним основные мысли:

  • Вектор — это абстрактное понятие, которое представляет собой организованную последовательность каких-то чисел.
  • В виде вектора можно представить координаты предмета в каком-то пространстве; площадь квартиры и её стоимость; цифровые данные анкеты какого-то человека и динамику цен на нефть.
  • Если по-простому, то векторы нужны, чтобы обрабатывать большое количество организованных чисел. Представьте, что вектор — это коробка с конфетами, только вместо конфет — числа. Каждое число стоит в своей ячейке.
  • Машинное обучение основано на перемножении матриц, которые, в свою очередь, можно представить как наборы векторов. Так что векторы лежат в глубине всех модных и молодёжных технологий ИИ.

С векторами можно совершать некоторые математические операции. Вот о них и поговорим.

Правильно — векторы

Математики часто говорят во множественном числе «вектора», но по словарю правильно «векторы». Это такой профессиональный жаргон, как «договора», «бухгалтера» и «сервера». Мы будем использовать «векторы», но если вы окажетесь в постковидном математическом баре, лучше говорите «вектора».

Сложение

Представим четыре вектора, которые лежат в двухмерном пространстве и пока что не связаны между собой. Нарисуем эти векторы и обозначим их буквами X, Y, Z, K.

Поскольку векторы находятся в одном пространстве, координаты каждого состоят из одинакового количества чисел. У нас пример с двухмерным пространством и два числа. Выглядеть это будет так: X = (6, 4); Y = (3, −2); Z = (−7, −5); K = (−10, 4).

Векторы X, Y, Z, K в двухмерном пространстве

Если у нас несколько векторов с одинаковым количеством чисел, то эти числа можно поэлементно складывать. Для этого мы берём первое число одного вектора, складываем его с первым числом другого вектора и так далее.

Предположим, нам нужно сложить векторы X и Y.

X = (6, 4)
Y = (3, −2)
X + Y = (9, 2)

Вроде просто: складываешь последовательно все координаты, результаты сложения складываешь в исходные коробочки. Так можно делать с любым количеством координат. Помните, что вектор — это необязательно стрелка в двумерном пространстве. Она может быть и в десятимерном пространстве — с точки зрения математики это неважно.

Например, вот сложение векторов с пятью координатами:

X = (6, 4, 11, 14, 99)
Y = (3, -2, 10, -10, 1)
X + Y = (9, 2, 21, 4, 100)

Интуитивное изображение сложения

Для интуитивного восприятия удобно использовать векторы с двумя координатами. Их удобно рисовать на координатной плоскости и таким образом смотреть на геометрию.

Например, можно на плоскости показать, как будет работать сложение двух векторов. Для этого есть два метода: метод треугольника и метод параллелограмма.

Метод треугольника: ставим векторы Х и Y в очередь друг за другом. Для этого берём вектор Х, ставим за ним вектор Y и получаем новый вектор. Новый вектор начинается в хвосте вектора Х и заканчивается на стрелке вектора Y. Этот вектор — результат сложения. Представьте, что это ребёночек двух векторов.

Читайте также  Как определить вареное яйцо

Сложение векторов по методу треугольника: X = (6, 4); Y = (3, −2); Х + Y = (9, 2)

Чтобы воспользоваться методом параллелограмма, нам нужно поставить векторы Х и Y в одну исходную точку. Дальше мы дублируем векторы Х и Y, формируем параллелограмм и получаем новый вектор. В новом векторе соединяем исходную точку с исходной точкой дублирующих векторов — стрелка проходит посередине параллелограмма. Длина нового вектора — это сумма векторов Х и Y.

Сложение по методу параллелограмма и треугольника даёт одинаковый результат. Поэтому выбирайте вариант, который больше подходит под задачу.

Сложение векторов по методу параллелограмма: X = (6, 4); Y = (3, -2); Х + Y = (9, 2)

Вычитание

Вычитание векторов немного сложнее. Чтобы вычесть векторы, нужно «развернуть» вычитаемый вектор и сложить его с исходным. «Развернуть» — то есть направить в обратную сторону, «перевернув» знаки координат. Получится конструкция вроде такой: Х + (−Y)

Дальше используются правила сложения. Пошагово это выглядит так:

  1. У нас есть X = (6, 4) и Y = (3, −2).
  2. Превращаем формулу Х − Y в формулу Х + (−Y).
  3. Разворачиваем вектор Y. Было: Y = (3, −2). Стало: −Y = (−3, 2).
  4. Считаем: X + (−Y) = (3, 6).

Теперь посмотрим, как выглядит вычитание векторов на графике:

Вычитание векторов по методу треугольника: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6) Вычитание векторов по методу параллелограмма: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6)

Длина вектора

Длина вектора — это одно число, которое измеряется расстоянием от кончика до стрелки вектора. Длину вектора нельзя путать с координатами. Координаты — это несколько чисел, которые указывают на расположение стрелки вектора. По координатам можно определить только конечную точку вектора. Например, если X = (6, 2), то стрелка будет находиться в точке 6 по оси Х. Или другой пример: если Y = (6, 5), то стрелка этого вектора будет находиться в точке 5 по оси Y.

Предположим, нам известны начальные точки векторов X и Y. Пусть это будет точка 2 по оси X и точка 2 по оси Y. Так мы можем легко посчитать длину отрезков:

X = 6 − 2 = 4
Y = 5 − 2 = 3

Иногда приходится рассчитывать длину третьего вектора, который привязан к двум другим векторам. Это легко сделать с помощью теоремы Пифагора — это когда квадрат гипотенузы равен сумме квадратов катетов. В нашем случае катетами будут длины векторов X и Y. Вспоминаем школьную формулу и считаем:

|C|2 = 42 + 32 = 25
|C| = √25 = 5 Длина вектора считается по формуле прямоугольного треугольника. Чтобы было проще представить — перенесите векторы на систему координат

Это формула для двумерного пространства. В трёхмерном пространстве формула похожая: нужно сложить квадраты трёх координат и вычислить квадратный корень из суммы.

В пространстве с большим числом измерений формула выглядит сложнее, но по сути то же: складываем все квадраты координат и получаем квадратный корень из этой суммы.

Умножение и деление вектора на число

Умножение и деление позволяют изменить длину и направление вектора. Если мы умножим вектор Х на три, то увеличим его длину в три раза. Если умножим на минус три — увеличим длину и изменим его направление на противоположное.

Умножение вектора на число

Для деления сохраняются аналогичные правила. Делим вектор Х на три и сокращаем длину в три раза. Делим на минус три — сокращаем и разворачиваем.

Деление вектора на число

Да вроде несложно!

Пока ничего сложного. Но если углубляться, вы узнаете, что:

  • векторы можно умножать на векторы тремя способами в зависимости от задачи и от того, что мы понимаем под умножением;
  • если от векторов перейти к матрицам, то перемножение матриц имеет несколько более сложную и довольно неинтуитивную математику;
  • а перемножение матриц — это и есть машинное обучение.

Что дальше

В следующей статье рассмотрим линейную зависимость векторов. Чтобы не скучать — посмотрите интервью с Анастасией Никулиной. Анастасия сеньор-дата-сайентист в Росбанке и по совместительству блогер с интересной историей.

Сложение векторов: длина суммы векторов и теорема косинусов

Определения скалярного произведения векторов через угол между ними

Сложение векторов по правилу треугольника (суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора ) даёт возможность упрощать выражение перед вычислением произведений векторов.

Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».

Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.

При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть и — векторы, — угол между ними, а — сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:

,

где — угол, смежный с углом . У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).

Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:

.

В случае вычитания векторов () происходит сложение вектора с вектором , противоположным вектору , то есть имеющим ту же длину, но противоположным по направлению. Углы между и и и между и являются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:

косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.

Перейдём к примерам.

Сложение векторов — решение примеров

Пример 1. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Решение. Из элементарной тригонометрии известно, что .

Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение

Пример 2. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Пример 3. Даны длины векторов и длина их суммы . Найти длину их разности .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:

Читайте также  Как отключить доверительный платеж Мегафон

Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Пример 4. Даны длины векторов и длина их разности . Найти длину их суммы .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:

Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между и :

Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:

Пример 5. Векторы и взаимно перпендикулярны, а их длины . Найти длину их суммы и и длину их разности .

Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:

Пример 6. Какому условию должны удовлетворять векторы и , чтобы имели место слелующие соотношения:

1) длина суммы векторов равна длине разности векторов, т. е. ,

2) длина суммы векторов больше длины разности векторов, т. е. ,

3) длина суммы векторов меньше длины разности векторов, т. е. ?

Находим условие для первого соотношения. Для этого решаем следующее уравнение:

То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.

Находим условие для второго соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).

Находим условие для третьего соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.

Простой способ складывать и вычитать вектора

Сложение (и особенно вычитание) векторов – это классика, как простые вещи иногда объясняют сложным языком. Если я спрашиваю абитуриента, как складывать (или вычитать) вектора, он нередко говорит: «Ну, правило параллелограмма, надо начало первого соединить с концом второго… Или наоборот…». В общем, дети вынуждены зазубривать правила, а все зазубренное, но не понятое, очень быстро забывается.

Итак, рассмотрим простой и понятный способ складывать и вычитать вектора. Допустим, надо найти вектор , равный сумме векторов , и . То есть, надо найти = + + (рисунок 1)

С векторами разрешен только параллельный перенос. То есть, нельзя их поворачивать и менять их длину. А передвигать, не меняя длины и направления, можно. Теперь просто выстраиваем вектора друг за другом (рисунок 2).

Проводим стрелку из начала цепочки в конец (красная линия). Это и есть вектор суммы (рисунок 3). Все.

Тут, правда, есть один нюанс: как понимать фразу «выстраиваем вектора друг за другом»? Представьте, что по стрелкам векторов ползет жучок. Вы должны выстроить вектора так, чтобы жуку было понятно, куда ползти. Если вы выстроили вектора, например, вот так (рисунок 4):

то это не «друг за другом». Жук выползает из точки Х, двигается по стрелкам, но в точке Y ему непонятно, что делать дальше. Если вы правильно выстроили вектора «друг за другом», то жук по стрелкам проползет из начальной точки в конечную (рисунок 5).

Теперь попробуем поменять слагаемые местами и найдем = + + . Как и в прошлом случае, выстраиваем вектора друг за другом (чтобы жуку было понятно) и рисуем стрелку из начала в конец пути (рисунок 6).

Как видите, суммарный вектор не зависит от очередности слагаемых. Тут как со скалярными величинами: от перемены мест слагаемых сумма не меняется. То есть, при сложении векторов их можно выстраивать в любом порядке. Результат будет одинаковым.

А как вычитать вектора? Да очень просто. Найдем, например, = + . Чем отличается вектор от вектора — ? Только направлением (Рисунок 7).

Значит, выстраиваем друг за другом (чтобы жуку было понятно) вектора , — и . Соединяем начало и конец маршрута результирующим вектором (рисунок 8). Все.

Фактически, тут мы нашли вектор = +(- )+ .

Надеюсь, теперь у вас с векторами не будет проблем. Допустим, вам встретилась задача: на рисунке 9 изображены силы, действующие на тело; найти равнодействующую.

Просто выстраиваем вектора друг за другом (чтобы жуку было понятно) в любом порядке и строим результирующий вектор из начала в конец цепочки векторов (рисунок 10).

Красная стрелка на рисунке 10 – это вектор равнодействующей силы.

Понравилась статья? Размести ссылку на сайт в социальных сетях

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: