Как решать линейные функции

График линейной функции, его свойства и формулы

О чем эта статья:

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х 2 4
y -2 -1

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Линейная функция (ЕГЭ 2022)

Зависимость одной величины от другой математики называют функций одной величины от другой.

Количество денег — это функция вашей зарплаты (иногда говорят «от зарплаты»).

Вес — это функция от съеденных круассанов. Чем меньше съел, тем меньше весишь.

Расстояние — это функция времени. Чем дольше ты будешь идти, тем больше пройдешь.

Ну а теперь перейдем к одному из видов функций – линейной функции.

Линейная функция — коротко о главном

Линейная функция –это функция вида ( y=kx+b), где ( k) и ( b) ­– любые числа (коэффициенты).

Рассмотрим, как коэффициенты влияют на месторасположение графика:

  • ( k) — отвечает за угол наклона графика (( displaystyle k=tgalpha ))
  • ( displaystyle b) — точка пересечения с ( displaystyle Oy)

Общие варианты представлены на рисунке:

Линейная функция

Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: деньги – зарплата, вес – круассаны, расстояние – время.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция ( y=fleft( x right)), это значит что каждому допустимому значению переменной ( x) (которую называют «аргументом») соответствует одно значение переменной ( y) (называемой «функцией»).

Что значит «допустимому»?

Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.

Например, для функции ( y=sqrt) отрицательные значения аргумента ( x) – недопустимы.

Ну и вернемся, наконец, к теме данной статьи.

Линейной называется функция вида ( y=kx+b), где ( k) и ( b) ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной?

Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения ( Dleft( y right)) и область значений ( Eleft( y right)).

Область определения линейной функции

Какими могут быть значения аргумента линейной функции ( y=kx+b)? Правильно, любыми. Это значит, что область определения – все действительные числа:

( Dleft( y right)=mathbb)

или ( Dleft( y right)=left( -infty ;+infty right)).

А множество значений?

Область значений линейной функции

Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент ( x), тем больше значение функции ( y).

Значит, ( y) так же как и ( x) может принимать все возможные значения, то есть ( Eleft( y right)=mathbb), верно?

Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?

Вспомним формулу: ( y=kx+b). Какие нужно выбрать коэффициенты ( k) и ( b), чтобы значение функции y не зависело от аргумента ( x)?

А вот какие: ( b) – любое, но ( k=0). И правда, каким бы ни был аргумент ( x), при умножении на ( k=0) получится ( 0)!

Тогда функция станет равна ( y=0cdot x+b=b), то есть она принимает одно и то же значение при всех ( x):

( y = kx + b:>left[ beginEleft( y right) = mathbb>k ne 0\Eleft( y right) = left< b right>>k = 0.end right.)

Теперь рассмотрим несколько задач на линейную функцию.

Три задачи на линейную функцию

  1. При увеличении аргумента функции ( y=kx+b) на ( 2), функция увеличилась на ( 4). Найдите коэффициент ( k).
  2. При увеличении аргумента функции ( y=kx+b) на ( 1), функция уменьшилась на ( 3). Найдите коэффициент ( k).
  3. Дана функция ( y=kx+b). При ( x=3:y=1), а при ( x=5:y=-1). Определите коэффициенты ( k) и ( b) функции.

Решение задачи №1

Пусть начальное значение аргумента равно некому числу ( <_<1>>). После увеличения на ( 2) аргумент стал равен: ( <_<2>>=<_<1>>+2).

Чему была равна функция до увеличения? Подставляем аргумент в формулу:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Решение задачи №2

Аналогично предыдущей задаче:

Начальное значение аргумента равно ( <_<1>>), конечное – ( <_<2>>=<_<1>>+1).

Начальное значение функции: ( <_<1>>=k<_<1>>+b);

В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Определение прямой пропорциональной зависимости

Если проанализировать решения этих двух задач, можно прийти к важному выводу.

При изменении аргумента линейной функции на ( Delta x) функция изменяется на ( kcdot Delta x). То есть изменение функции всегда ровно в ( mathbf) раз больше изменения аргумента.

По сути это является определением прямой пропорциональной зависимости.

Решение задачи №3

Подставим известные значения аргумента и функции в формулу ( y=kx+b):

Получили два уравнения относительно ( k) и ( b). Теперь достаточно решить систему этих двух уравнений:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

График линейной функции

Как я уже упоминал ранее, график такой функции – прямая линия.

Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).

Предположим, у нас есть функция линейная функция ( y=2x+1). Чтобы построить ее график, нужно вычислить координаты любых двух точек.

То есть нужно взять любые два значения аргумента ( x) и вычислить соответствующие два значения функции.

Затем для каждой пары ( left( x;y right)) найдем точку в системе координат, и проведем прямую через эти две точки.

Проще всего найти функцию, если аргумент ( x=0:yleft( 0 right)=2cdot 0+1=1).

Итак, первая точка имеет координаты ( left( 0;1 right)).

Теперь возьмем любое другое число в качестве ( x), например, ( x=1:yleft( 1 right)=2cdot 1+1=3).

Вторая точка имеет координаты ( left( 1;3 right)).

Ставим эти две точки на координатной плоскости:

Теперь прикладываем линейку, и проводим прямую через эти две точки:

Вот и все, график построен!

Давай теперь на этом же рисунке построим еще два графика: ( y= -1) и ( y=-x+2).

Построй их самостоятельно так же: посчитай значение y для любых двух значений ( x), отметь эти точки на рисунке и проведи через них прямую.

Должно получиться так:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах ( displaystyle k) и ( displaystyle b).

Давай разберемся, на что они влияют.

Коэффициенты линейной функции

Для начала выясним, что делает коэффициент ( displaystyle b). Рассмотрим функцию ( displaystyle y=x+b), то есть ( displaystyle k=1).

Меняя ( displaystyle b) будем следить, что происходит с графиком.

Итак, начертим графики для разных значений ( displaystyle b_b=-2,text< ->1,text< >0,text< >1,text< >2):

Что ты можешь сказать о них? Чем отличаются графики?

Это сразу видно: чем больше ( displaystyle b), тем выше располагается прямая.

Более того, заметь такую вещь: график пересекает ось ( displaystyle mathbf) в точке с координатой, равной ( displaystyle mathbf)!

И правда. Как найти точку пересечения графика с осью ( displaystyle y)? Чему равен ( displaystyle x) в такой точке?

В любой точке оси ординат (это название оси ( displaystyle y), если ты забыл) ( displaystyle x=0).

Значит достаточно подставить ( displaystyle x=0) в функцию, и получим ординату пересечения графика с осью ( displaystyle y):

( displaystyle y=kcdot 0+b=b)

Теперь по поводу ( displaystyle k). Рассмотрим функцию ( displaystyle left( b=0 right).) Будем менять ( displaystyle k) и смотреть, что происходит с графиком.

Построим графики для ( displaystyle k=-3,text< ->1,text< >0,text< >1,text< >2:)

Так, теперь ясно: ( displaystyle k) влияет на наклон графика.

Чем больше ( displaystyle k) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – ( displaystyle Ox)) расположена прямая.

Если ( displaystyle k>0), график наклонен «вправо», при ( displaystyle k

Выберем на графике две точки ( displaystyle A) и ( displaystyle B). Для простоты выберем точку ( displaystyle A) на пересечении графика с осью ординат. Точка ( displaystyle B) – в произвольном месте прямой, пусть ее координаты равны ( displaystyle left( x;y right)).

Рассмотрим прямоугольный треугольник ( displaystyle ABC), построенный на отрезке ( displaystyle AB) как на гипотенузе.

Из рисунка видно, что ( displaystyle AC=x), ( displaystyle BC=y-b).

Подставим ( displaystyle y=kx+b) в ( displaystyle BC_BC=y-b=kx+b-b=kx).

Получается, что ( BC = k cdot AC> Rightarrow >k = frac<><> = nolimits> alpha ).

Итак, коэффициент ( displaystyle k) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.

Именно поэтому его (коэффициент ( displaystyle k)) обычно называют угловым коэффициентом.

В случае, когда ( k

Если же ( displaystyle k=0), тогда и ( nolimits> alpha = 0,) следовательно ( displaystyle alpha =0), то есть прямая параллельна оси абсцисс.

Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.

Разбор еще трех задач на линейную функцию

1. Найдите коэффициенты ( displaystyle k) и ( displaystyle b) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

2. Найдите коэффициенты ( displaystyle k) и ( displaystyle b) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

3. График какой из функций изображен на рисунке?

Решение задачи №1

Коэффициент ( b) найти проще простого – это ведь точка пересечения графика с осью ( displaystyle Oy):

Угловой коэффициент ( displaystyle k) – это тангенс угла наклона прямой.

Для его нахождения выберем две точки ( displaystyle A) и ( displaystyle B) на графике и построим прямоугольный треугольник с гипотенузой ( displaystyle AB):

Линейная функция « y = kx + b » и её график

Прежде чем перейти к изучению функции « y = kx » внимательно изучите урок
«Что такое функция в математике» и «Как решать задачи на функцию».

Функцию вида « y = kx + b » называют линейной функцией.

Буквенные множители « k » и « b » называют числовыми коэффициентами .

Вместо « k » и « b » могут стоять любые числа (положительные, отрицательные или дроби).

Другими словами, можно сказать, что « y = kx + b » — это семейство всевозможных функций, где вместо « k » и « b » стоят числа.

Примеры функций типа « y = kx + b ».

  • y = 5x + 3
  • y = −x + 1
  • y =
    2
    3

    x − 2

  • y = 0,5x

Давайте определим для каждой функций выше, чему равны числовые коэффициенты « k » и « b » .

Обратите особое внимание на функцию « y = 0,5x » в таблице. Часто совершают ошибку при поиске в ней числового коэффициента « b ».

Рассматривая функцию « y = 0,5x », неверно утверждать, что числового коэффициента « b » в функции нет.

Числовый коэффициент « b » присутствет в функции типа « y = kx + b » всегда. В функции « y = 0,5x » числовый коэффициент « b » равен нулю .

Как построить график линейной функции
« y = kx + b »

Графиком линейной функции « y = kx + b » является прямая .

Так как графиком функции « y = kx + b » является прямая линия , функцию называют линейной функцией.

Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.

Исходя из аксиомы выше следует, что чтобы построить график функции вида
« у = kx + b » нам достаточно будет найти всего две точки.

Для примера построим график функции « y = −2x + 1 ».

Найдем значение функции « y » для двух произвольных значений « x ». Подставим, например, вместо « x » числа « 0 » и « 1 ».

Выбирая произвольные числовые значения вместо « x », лучше брать числа « 0 » и « 1 ». С этими числами легко выполнять расчеты.

x Расчет « y = −2x + 1 »
y(0) = −2 · 0 + 1 = 1
1 y(1) = −2 · 1 + 1 = −2 + 1 = −1

Полученные значения « x » и « y » — это координаты точек графика функции.

Запишем полученные координаты точек « y = −2x + 1 » в таблицу.

Точка Координата по оси « Оx » (абсцисса) Координата по оси « Оy » (ордината)
(·)A 1
(·)B 1 −1

Отметим полученные точки на системе координат.

Теперь проведем прямую через отмеченные точки. Эта прямая будет являться графиком функции « y = −2x + 1 ».

Как решать задачи на
линейную функцию « y = kx + b »

Построить график функции « y = 2x + 3 ». Найти по графику:

  1. значение « y » соответствующее значению « x » равному −1; 2; 3; 5 ;
  2. значение « x », если значение « y » равно 1; 4; 0; −1 .

Вначале построим график функции « y = 2x + 3 ».

Используем правила, по которым мы строили график функции выше. Для построения графика функции « y = 2x + 3 » достаточно найти всего две точки.

Выберем два произвольных числовых значения для « x ». Для удобства расчетов выберем числа « 0 » и « 1 ».

Выполним расчеты и запишем их результаты в таблицу.

Точка Координата
по оси « Оx »
Координата
по оси « Оy »
(·)A y(0) = 2 · 0 + 3 = 3
(·)B 1 y(1) = 2 ·1 + 3 = 5

Отметим полученные точки на прямоугольной системе координат.

Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции « y = 2x + 3 ».

Теперь работаем с построенным графиком функции « y = 2x + 3 ».

Требуется найти значение « y », соответствующее значению « x »,
которое равно −1; 2; 3; 5 .

Тему «Как получить координаты точки функции» с графика функции мы уже подробно рассматривали в уроке «Как решать задачи на функцию».

В этому уроке для решения задачи выше вспомним только основные моменты.

Чтобы найти значение « y » по известному значению « x » на графике функции необходимо:

  1. провести перпендикуляр от оси « Ox » (ось абсцисс) из заданного числового значения « x » до пересечения с графиком функции;
  2. из полученной точки пересечения перпендикуляра и графика функции провести еще один перпендикуляр к оси « Oy » (ось ординат);
  3. полученное числовое значение на оси « Oy » и будет искомым значением.

По правилам выше найдем на построенном ранее графике функции « y = 2x + 3 » необходимые значения функции « y » для « x » равным −1; 2; 3; 5 .

Запишем полученные результаты в таблицу.

Заданное значение « x » Полученное с графика значение « y »
−1 1
2 7
3 9
5 13

Переходим ко второму заданию задачи. Требуется найти значение « x », если значение « y » равно 1; 4; 0; −1 .

Выполним те же действия, что и при решении предыдущего задания. Разница будет лишь в том, что изначально мы будем проводить перпендикуляры от оси « Oy » .

Запишем полученные результаты в таблицу.

Заданное значение « y » Полученное с графика значение « x »
−1 −2
−1,5
1 −1
4 0,5

Как проверить, проходит ли график через точку

Рассмотрим другое задание.

Не выполняя построения графика функции « y = 2x −

1
3

», выяснить, проходит ли график через точки с координатами (0; −

1
3

) и (1; −2) .

Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси « Ox » вместо « x », а координату по оси « Oy » вместо « y ») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка не принадлежит графику функции.

Подставим в функцию « y = 2x −

1
3

» координаты точки (0; −

1
3

) .

1
3

= 2 · 0 −

1
3

1
3

= −

1
3

(верно)
Это означает, что график функции « y = 2x −

1
3

» проходит через точку с координатами (0; −

1
3

) .
Проверим точку с координатами (1; −2) . Также подставим координаты
в функцию « y = 2x −

1
3

».
−2 = 2 · 1 −

1
3

−2 = 2 −

1
3

−2 = 1

3
3

1
3

−2 = 1

2
3

(неверно)
Это означает, что график функции « y = 2x −

1
3

» не проходит через точку с координатами (1; −2) .

Как найти точки пересечения графика с осями

Найти координаты точек пересечения графика функции « y = −1,5x + 3 » с осями координат.

Для начала построим график функции « y = −1,5x + 3 » и на графике отметим точки пересечения с осями.

Для построения графика функции найдем координаты двух точек
функции « y = −1,5x + 3 ».

Выберем два произвольных числовых значения для « x » и рассчитаем значение « y » по формуле функции. Например, для x = 0 и x = 1 .

Точка Координата
по оси « Оx »
Координата
по оси « Оy »
(·)A y(0) = −1,5 · 0 + 3 = 3
(·)B 1 y(1) = −1,5 · 1 + 3 = 1,5

Отметим полученные точки на системе координат и проведем через них прямую. Тем самым мы построим график функции « y = −1,5x + 3 ».

Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.

Чтобы найти координаты точки пересечения графика функции
с осью « Oy » (осью ординат) нужно:

  • приравнять координату точки по оси « Ox » к нулю (x = 0) ;
  • подставить вместо « x » в формулу функции ноль и найти значение « y »;
  • записать полученные координаты точки пересечения с осью « Oy » .

Подставим вместо « x » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы найти координаты точки пересечения графика функции
с осью « Ox » (осью абсцисс) нужно:

  • приравнять координату точки по оси « Oy » к нулю (y = 0) ;
  • подставить вместо « y » в формулу функции ноль и найти значение « x »;
  • записать полученные координаты точки пересечения с осью « Oy » .

Подставим вместо « y » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

Если нужно найти координаты точки пересечения графика с осью « Ox » , то приравниваем « y » к нулю.

И наооборот. Если нужно найти координаты точки пересечениа графика с осью « Oy » , то приравниваем « x » к нулю.

Линейная функция — свойства, формула и примеры построения графика

Общие сведения

В математике существует определение линейной функции, которое частично ее характеризует. Однако этого недостаточно для построения графика и дальнейшего исследования. На основании определений формулируются теоремы. Последние необходимо доказывать, а полученный результат применять для решения различных задач.

Функцией называется зависимость одной величины от другой, которая может быть выражена простым или сложным законом. Зависимая величина называется значением функции. Аргументом является любое значение независимой переменной, но при условии, что в результате подстановки она не обращает функцию в неопределенность.

Простым примером может быть выражение z = 1 / p (гипербола). Величина p может принимать любые значения, кроме 0. Примером линейной функции является тождество z = 4 * v. Следует отметить, что v может принимать любые значения. Если v = 0, то на графике следует отметить точку в центре координат (v = 0; z = 4 * 0 = 0).

После небольшого вступления необходимо разобрать прямоугольную систему координат, так как в ней нужно выполнять построение функции линейной зависимости.

Декартова система координат

Для построения графиков функций применяется специальный инструмент. Он называется координатной системой или плоскостью. Пользуется высокой популярностью прямоугольная декартова система координат (рис. 1), состоящая из двух осей. Последние пересекаются под прямым углом. Горизонтальная называется осью абсцисс, а вертикальная — ординат. Значения последней зависят от первой, хотя их можно поменять местами. Чтобы не было путаницы, нужно придерживаться первого варианта.

Рисунок 1. Декартова прямоугольная система координат на плоскости (ДПСКП).

Ось ординат часто обозначают OY, а абсцисс — OX. Точкой их пересечения считается О. Названия осей можно изменить. Кроме того, подобную операцию можно осуществить и с их центром. Например, его можно обозначить G, O’, O1 и т. д. Этот прием используется для решения задач с несколькими системами. Например, одна из них находится в другой, то есть применяется для решения упражнений на повороты и подобия фигур.

Прямоугольная система разделена на четыре четверти. Если функция находится в первой (I), то она является положительной. Координаты также имеют свой знак (положительный или отрицательный). Эту особенность следует учитывать для решения задач. Например, пусть дана абсцисса t и ордината v. Специалисты рекомендуют разобрать свойства четвертей, используя такие обозначения и свойства знаков:

  1. I: t > 0 и v > 0.
  2. II: t 0.
  3. III: t 0 и v

Очень важно правильно находить координаты заданной точки. Для этого нужно опустить два перпендикуляра на оси абсцисс и ординат соответственно. Далее следует указать значения в круглых скобках. Координата независимой переменной указывается на первой позиции. Например, на рисунке 1 точка имеет координаты (3/2), однако принято использовать разделитель «;». В этом случае запись будет выглядеть таким образом: (3;2). Математики также рекомендуют учитывать масштаб осей.

Прямая пропорциональность и коэффициент

В математических дисциплинах существует понятие прямой и обратной пропорциональности. Его применяют для описания характера зависимости одной величины от другой. Этот способ является наиболее простым, поскольку в качестве коэффициента пропорциональности выступает определенное число.

Формула линейной функции записывается следующим образом: y = k * x + b. В этом тождестве следует обратить внимание на угловой коэффициент.

Аналитической моделью прямой пропорциональности в геометрии является прямая, а в физике — пучок света. В математике применяются линейные и нелинейные функции. Если проводить аналогию, то y = k * х относится к первой группе. Свободный член b может принимать любые значения. Расположение прямой линии зависит от k и b. Если последний равен 0, то график проходит через начало координат (точку пересечения осей). Кроме того, от k зависит угол наклона f, который измеряется в градусах:

  1. k > 0: 0 90.
  2. k = 0: график параллелен оси абсцисс, поскольку у = 0 * х + b = b.

В первом случае угол f является острым, то есть он меньше 90 градусов, а во втором — тупым. Если к = 0, то, выполнив необходимые математические преобразования, можно сделать вывод о том, что он параллелен оси OX. Важным элементом, который применяется для построения графика, считается предварительное исследование искомой функции.

Элементы исследования функции

Исследование функции применяется для анализа (объяснения) ее свойств и построения графика с учетом характерных особенностей. Операцию следует выполнять строго по алгоритму. В некоторых случаях допускается опускать отдельные элементы, которые не нужны по условию задачи. Необходимо выяснить характер поведения функции. Анализируется она по такому перечню: поиск области определения и допустимых значений, нулей и знаковых промежутков, периодичности, монотонности и экстремумов. Также проводится анализ на четность.

Далее строится график с учетом результатов исследования, на основании которых можно построить даже приближенное графическое представление. Перед тем как приступить к исследованию, необходимо разобрать правила записи интервалов в математике. Этот момент является очень важным, поскольку от него зависит правильность построения и анализа функции. Существует такая международная форма их записи:

  1. Жесткая граница [] обозначает, что число включено в заданный интервал.
  2. Другой тип границ обозначается скобками (). Его суть заключается в том, что число не принадлежит промежутку.
  3. Предусматривается возможность комбинирования двух типов границ.
  4. При объединении интервалов применяется символ U.
  5. Перед бесконечностью всегда следует ставить круглую скобку.
  6. Распространенные обозначения бесконечности имеют такой вид: inf, бесконечность или ∞.
  7. Комбинацию промежутков следует производить по возрастанию.

Нужно разобрать несколько примеров. Промежуток вида [2;5) означает, что в интервал входят следующие числа: 2, 3 и 4. Следует отметить, что бесконечность может быть положительной и отрицательной. В первом случае перед значком не указывается знак +, хотя при желании это можно сделать, поскольку эта форма записи не считается ошибкой. Отрицательная большая величина обозначается -inf, -бесконечность или -∞. Далее следует подробно рассмотреть область определения и понятие о допустимых значениях.

Области определения

Область определения функции — допустимый интервал значений, которые принимает ее аргумент. Иными словами, это значения независимой переменной, при подстановке которых выражение продолжает существовать и не считается неопределенностью. Простой пример: p = 1 / s. Это выражение является неопределенностью только при значении s = 0, поскольку на 0 делить нельзя. Обозначать область определения следует таким образом: D(имя функции). Для функции p = 1 / s запись производится в таком виде: D(p) = (-∞;0) U (0; ∞).

Следующим элементом является область допустимых значений функции (E(p)), которая представляет промежуток значений выражения на заданном интервале. Однако не следует путать эти два термина, поскольку вычисляются они по разным алгоритмам. Если D(p) записывается некоторым промежутком аргумента, то поиск E(p) сводится к определению точек экстремума и дальнейшей проверке их соответствия искомому интервалу.

Нулевые значения и знаковые интервалы

Нулями функции вида у = k * х + b называются все значения зависимой и независимой величин, при которых график пересекается с осями прямоугольной системы координат. Выполняется операция нахождения нулей по таким формулам:

  1. OY (при х = 0): у = k * 0 + b = b.
  2. OX (у = 0): х = — b / k.

Интервалом знакопостоянства называется совокупность определенных промежутков, на которых функция меняет знак на противоположный. Для этого применяется частичное исследование:

  1. Указание интервала D(z).
  2. Определение точек пересечения с ОХ.
  3. Построение отдельной оси ОХ и отложение на ней точек разрыва и нулей.

У линейной зависимости нет точек разрыва, поскольку ее геометрической интерпретацией является прямая. Промежутки знакового поведения указываются таким образом:

  1. Положительные: z(p) > 0 ->. Интервал, на котором область значений является только положительной.
  2. Отрицательные: z(p) . Интервал отрицательных значений.

На ОХ следует обозначать только значения, которые входят в D(z). Все остальные нужно отсеивать, поскольку они являются ложными.

Характер периодичности и четности

Периодичность функции изучается в старших классах на алгебре. У этого термина есть соответствующее определение: периодической называется функция, поведение которой повторяется через определенный период. Линейная зависимость не считается периодичной, поскольку у нее отсутствуют интервалы сменного знакопостоянства. Для проверки необходимо применить такую формулу: z(p + T) = z(p — T). Подставляется некоторое значение периода, и анализируется поведение функции.

Чтобы проверить четность, нужно применить другую формулу: z(p) = z(-p). Для реализации проверки нужно подставить сначала положительное значение аргумента, а затем отрицательное. Далее следует сравнить ответы. Если равенство соблюдается, то можно сделать вывод о четности искомого тождества. Для определения нечетности существует другая формула: -z(p) = z(-p). Однако бывают случаи, когда ни одно из равенств не выполняется. Тогда математики говорят, что искомая функция не является четной и нечетной.

Монотонность, минимум и максимум

Монотонностью функции называется ее способность к возрастанию или убыванию на всей области допустимых значений. Для определения этого параметра существует элементарный алгоритм:

  1. Определить первую производную и приравнять ее к 0.
  2. Решить уравнение в первом пункте относительно аргумента.
  3. Найти интервалы знакопостоянства.

Для поиска минимального и максимального значений (экстремумов) на необходимом промежутке или всей числовой оси нужно применить такую инструкцию:

  1. Сопоставление D(z) отрезку, на котором следует найти экстремумы. Последний из них должен входить в D(z).
  2. Взять производную исходной функции.
  3. Найти стационарные точки. Для этого следует приравнять производную к 0 и решить уравнение.
  4. Подставить результаты решения в первоначальную функцию.
  5. Определить MIN и MAX.

Математики рекомендуют учитывать каждую точку. Кроме того, необходимо отсеять ложные корни. Для этого следует подставить полученные значения переменной в уравнение, а затем произвести расчеты. Должно быть соответствие левой и правой частей.

Свойства зависимости

Перед тем как решать задачи, нужно обратить внимание на свойства линейной функции. Существуют два положения, которые зависят от коэффициента k. При k > 0 функция обладает такими свойствами:

  1. Графиком является прямая линия.
  2. D(y) = (-∞;∞).
  3. При отрицательных значениях аргумента значение функции эквивалентно отрицательной величине. Если независимая переменная — положительная величина, то и зависимая принимает только положительные значения. В этом моменте ключевую роль играет величина сдвига влево или вправо b.
  4. Возрастает на E(у).
  5. Отсутствие экстремумов.
  6. Непрерывная и нечетная.
  7. Период отсутствует.

Линейная функция.

Линейной функцией называется функция, заданная формулой y = kx + b , где k и b — любые действительные числа.
Графиком линейной функции является прямая.

Если k = 0, то функция y = b называется постоянной. Её графиком, является прямая, параллельная оси Ox.
Если b = 0, то формула y = kx задает прямо пропорциональную зависимость. Графиком такой функции является прямая, проходящая через начало координат.

Верно и обратное — любая прямая, не параллельная оси Oy, является графиком некоторой линейной функции.

Построить график линейной функции очень легко.
Положение любой прямой однозначно определяется заданием двух её точек. Поэтому линейная функция вполне определяется заданием её значений для двух значений аргумента. Например,

x 1
y b k + b

Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.

Свойства линейной функции при k ≠ 0, b ≠ 0.
1) Область определения функции — множество всех действительных чисел: R или (−∞; ∞).
2) Функция y = kx + b ни четна, ни нечетна.
3) При k > 0 функция монотонно возрастает, а при k Упражнение:
На рисунке представлены 4 прямые линии. Могут ли они являться графиками функций? Если да, то определите каких.

Прямые, наклоненные к оси абсцисс под острым или тупым углом — графики линейной функции общего вида: y = kx + b. Параметр b легко определить по точке пересечения линии с осью ординат (Oy). Параметр k определяется построеним по клеточкам треугольника, содержащего угол α для острых углов или смежный с ним — для тупых. Точные ответы на рисунке.
Прямая, параллельная оси абсцисс (здесь — горизонтальная линия), является графиком частного вида линейной функции y = b, который называют постоянной или константой. Значение этой функции не изменяется, поэтому ординаты точки графика всегда находятся на одной высоте относительно оси Ox.

Следующая прямая линия НЕ является графиком какой-либо функции. Здесь нет однозначности. Если x = 6, то y = ? Любому действительному числу! Т.е., для неё не удовлетворяется определение функции, а именно условие, что каждому значению аргумента x должно соответствовать единственное значение функции y. Но такие линии нам тоже встречаются, например, в качестве вертикальных асимптот. Поэтому нужно знать, что их уравнение x = a, где а — заданное число.

Видеоуроки для подготовки к ОГЭ по математике. 9 класс.

Подробное исследование коэффициентов линейной функции.

Примеры решения заданий ОГЭ по математике.

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

Линейная функция, ее свойства и график

теория по математике функции

Функция, заданная формулой y=kx+b, где х – переменная, k и b – некоторые числа, называется линейной функцией. Переменную х называют независимой переменной, переменную у – зависимой переменной.

Графиком линейной функции является прямая. Для построения прямой достаточно взять два значения х, чтобы получить два значения у и, соответственно, две точки, через которые проходит единственная прямая.

Число k называется угловым коэффициентом прямой.

Свойства линейной функции

  1. Область определения функции – множество всех действительных чисел. То есть в данную формулу мы можем подставлять любое значение х.
  2. Областью значений также является множество всех действительных чисел.
  3. Функция не имеет ни наибольших, ни наименьших значений.
  4. При k – положительном, угол наклона к оси х острый, другими словами – график функции возрастает.
  5. При k отрицательном угол наклона к оси х тупой, то есть график функции – убывает.
  6. При k=0 прямая параллельна оси х.
  7. Частный случай линейной функции: y=kx, где число b=0, эту функцию называют прямой пропорциональностью, график такой функции проходит через начало координат.

Рассмотрим на примерах расположение прямых в координатной плоскости в зависимости от значения чисел k и b.

Пример №1

Построить график функции у=2х – 1. Для того, чтобы удобнее было выполнять вычисления, построение и т.д. сделаем таблицу для значений х и у:

Для построения графика подбираем два значения х, одно из них желательно брать равное нулю, второе, например 3 (подбираем небольшие числа).

х 3
у

Теперь подставляем значения х в формулу и вычисляем соответствующие значения у:

у=2х – 1=2 × 0 – 1= –1;

у=2х – 1=2 × 3 – 1= 5.

Вписываем в таблицу значения у:

х 3
у –1 5

Теперь строим систему координат, отмечаем в ней точки с координатами А(0; –1) и В(3;5), проводим через эти две точки прямую.

Итак, по формуле мы видим, что угловой коэффициент — положительный, значит, график – возрастает, что мы и видим на нашем графике.

Пример №2.

Построить график функции у= –3х+4. Итак, делаем таблицу на два значения, например, возьмем 0 и 2.

х 2
у 4 –2

По формуле видим, что угловой коэффициент отрицательный, значит, прямая будет убывать. Строим убывающую прямую в системе координат через две точки А(0;4) и В(2; –2).

Пример №3

Построить график функции у=4. Видим, что в данном случае число х=0, значит, прямая будет проходить через точку с координатой (0;4) параллельно оси х. На графике это выглядит следующим образом:

Построить график функции у=3х. Данная функция является частным случаем, когда прямая проходит через начало координат. Поэтому в данном случае можно взять устно одно значение х, например 2, тогда у получим равный 6. Таким образом, имеем две точки (2;6) и (0;0). Строим их в системе координат и проводим через них прямую, которая будет возрастать, так как угловой коэффициент равен 3, т.е. положительный.

На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.

ассмотрим коэффициенты под №3. Если k 90 0 ) угол с положит.направлением оси абсцисс (Ох). Если b 0. Это соответствует оставшимся графикам А и Б, т.к. они оба наклонены к положительно направлению оси Оx под острым углом ( 0 ). Следовательно, выбор соответствия должен быть выполнен по коэффициенту b.

В 1-й паре коэффициентов b 0, что соответствует графику А, который пересекает ось Оу выше начала координат. Это подтверждает, что и оставшаяся пара А–2 тоже верна.

pазбирался: Даниил Романович | обсудить разбор | оценить

Установите соответствие между функциями и их графиками.

Функция представляет собой линейную зависимость, а именно уравнение первого порядка вида:

График данной функции зависит от k и b.

  • если k 0, то функция возрастает, то есть линия идет снизу вверх, как на первых двух рисунках
  • коэффициент b определяет сдвиг по оси y, если b 0, то выше ноля в точке y = b
  • если k >1, то прямая идет круче, чем обычная y = x (как на втором и третьем графике), если k

pазбирался: Даниил Романович | обсудить разбор | оценить

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: