Как построить проекцию
Построение ортогональных проекций точек
Положение точки в пространстве может быть задано двумя её ортогональными проекциями, например, горизонтальной и фронтальной, фронтальной и профильной. Сочетание любых двух ортогональных проекций позволяет узнать значение всех координат точки, построить третью проекцию, определить октант, в котором она находится. Рассмотрим несколько типичных задач из курса начертательной геометрии.
По заданному комплексному чертежу точек A и B необходимо:
Определение координат точек по их проекциям
Определим сначала координаты т. A, которые можно записать в виде A (x, y, z). Горизонтальная проекция т. A – точка A’, имеющая координаты x, y. Проведем из т. A’ перпендикуляры к осям x, y и найдем соответственно Aх, Aу. Координата х для т. A равна длине отрезка AхO со знаком плюс, так как Aх лежит в области положительных значений оси х. С учетом масштаба чертежа находим х = 10. Координата у равна длине отрезка AуO со знаком минус, так как т. Aу лежит в области отрицательных значений оси у. С учетом масштаба чертежа у = –30. Фронтальная проекция т. A – т. A» имеет координаты х и z. Опустим перпендикуляр из A» на ось z и найдем Az. Координата z точки A равна длине отрезка AzO со знаком минус, так как Az лежит в области отрицательных значений оси z. С учетом масштаба чертежа z = –10. Таким образом, координаты т. A (10, –30, –10).
Координаты т. B можно записать в виде B (x, y, z). Рассмотрим горизонтальную проекцию точки B – т. В’. Так как она лежит на оси х, то Bx = B’ и координата Bу = 0. Абсцисса x точки B равна длине отрезка BхO со знаком плюс. С учетом масштаба чертежа x = 30. Фронтальная проекция точки B – т. B˝ имеет координаты х, z. Проведем перпендикуляр из B» к оси z, таким образом найдем Bz. Аппликата z точки B равна длине отрезка BzO со знаком минус, так как Bz лежит в области отрицательных значений оси z. С учетом масштаба чертежа определим значение z = –20. Таким образом, координаты B (30, 0, -20). Все необходимые построения представлены на рисунке ниже.
Построение проекций точек
Точки A и B в плоскости П3 имеют следующие координаты: A»’ (y, z); B»’ (y, z). При этом A» и A»’ лежат одном перпендикуляре к оси z, так как координата z у них общая. Точно также на общем перпендикуляре к оси z лежат B» и B»’. Чтобы найти профильную проекцию т. A, отложим по оси у значение соответствующей координаты, найденное ранее. На рисунке это сделано с помощью дуги окружности радиуса AуO. После этого проведем перпендикуляр из Aу до пересечения с перпендикуляром, восстановленным из точки A» к оси z. Точка пересечения этих двух перпендикуляров определяет положение A»’.
Точка B»’ лежит на оси z, так как ордината y этой точки равна нулю. Для нахождения профильной проекции т. B в данной задаче необходимо лишь провести перпендикуляр из B» к оси z. Точка пересечении этого перпендикуляра с осью z есть B»’.
Определение положения точек в пространстве
Наглядно представляя себе пространственный макет, составленный из плоскостей проекций П1, П2 и П3, расположение октантов, а также порядок трансформации макета в эпюр, можно непосредственно определить, что т. A расположена в III октанте, а т. B лежит в плоскости П2.
Другим вариантом решения данной задачи является метод исключений. Например, координаты точки A (10, -30, -10). Положительная абсцисса x позволяет судить о том, что точка расположена в первых четырех октантах. Отрицательная ордината y говорит о том, что точка находится во втором или третьем октантах. Наконец, отрицательная аппликата z указывает на то, что т. A расположена в третьем октанте. Приведенные рассуждения наглядно иллюстрирует следующая таблица.
Октанты | Знаки координат | ||
x | y | z | |
1 | + | + | + |
2 | + | – | + |
3 | + | – | – |
4 | + | + | – |
5 | – | + | + |
6 | – | – | + |
7 | – | – | – |
8 | – | + | – |
Координаты точки B (30, 0, -20). Поскольку ордината т. B равна нулю, эта точка расположена в плоскости проекций П2. Положительная абсцисса и отрицательная аппликата т. B указывают на то, что она расположена на границе третьего и четвертого октантов.
Построение наглядного изображения точек в системе плоскостей П1, П2, П3
Используя фронтальную изометрическую проекцию, мы построили пространственный макет III октанта. Он представляет собой прямоугольный трехгранник, у которого гранями являются плоскости П1, П2, П3, а угол (-y0x) равен 45 º. В этой системе отрезки по осям x, y, z будут откладываться в натуральную величину без искажений.
Построение наглядного изображения т. A (10, -30, -10) начнем с её горизонтальной проекции A’. Отложив по оси абсцисс и ординат соответствующие координаты, найдем точки Aх и Aу. Пересечение перпендикуляров, восстановленных из Aх и Aу соответственно к осям x и y определяет положение т. A’. Отложив от A’ параллельно оси z в сторону её отрицательных значений отрезок AA’, длина которого равна 10, находим положение точки A.
Наглядное изображение т. B (30, 0, -20) строится аналогично – в плоскости П2 по осям x и z нужно отложить соответствующие координаты. Пересечение перпендикуляров, восстановленных из Bх и Bz, определит положение точки B.
§ 3. Проецирование
3.1. Общие сведения о проецировании. Изображения предметов на чертежах в соответствии с правилами государственного стандарта выполняют по способу (методу) прямоугольного проецирования. Проецированием называют процесс построения проекции предмета. Как получаются проекции? Рассмотрите такой пример.
Возьмем в пространстве произвольную точку А и какую-нибудь плоскость Н (рис. 37). Проведем через точку А прямую так, чтобы она пересекала плоскость Н в некоторой точке а. Тогда точка а будет проекцией точки А. Плоскость, на которой получается проекция, называется плоскостью проекций. Прямую Аа называют проецирующим лучом. С его помощью точка А проецируется на плоскость Н. Указанным способом могут быть построены проекции всех точек любой пространственной фигуры.
Рис. 37. Получение проекций точки
Следовательно, чтобы построить проекцию какой-либо фигуры на плоскости, необходимо через точки этой фигуры провести воображаемые проецирующие лучи до их пересечения с плоскостью. Проекции всех точек фигуры образуют проекцию заданной фигуры. Рассмотрим получение проекции какой-нибудь геометрической фигуры, например треугольника (рис. 38).
Рис. 38. Проекция фигуры
Будем в дальнейшем обозначать точки, взятые на предмете, прописными буквами, а их проекции — строчными. Проекцией точки А на заданную плоскость и будет точка 0 как результат пересечения проецирующего луча Аа с плоскостью проекций. Проекциями точек В и С будут точки b и с. Соединив на плоскости точки а, Ь и с отрезками прямых, получим фигуру abc, которая и будет проекцией заданной фигуры ABC.
Представление о проекции можно получить, рассматривая тени предметов. Возьмем, например, проволочную модель призмы (рис. 39). Пусть эта модель при освещении солнечными лучами отбрасывает тень на стену. Полученную таким образом тень можно принять за проекцию заданного предмета.
Рис. 39. Получение тени модели
Слово «проекция» латинское. В переводе на русский язык оно означает «бросать (отбрасывать) вперед».
Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета. Примерами проекций являются также фотографические снимки, кинокадры и др.
- Что называется проецированием? Приведите примеры проекций.
- Как построить на плоскости проекцию точки? проекцию фигуры?
3.2. Центральное и параллельное проецирование. Если проецирующие лучи, с помощью которых строится проекция предмета, исходят из одной точки, проецирование называется центральным (рис. 40). Точка, из которой исходят лучи, называется центром проецирования. Полученная при этом проекция называется центральной.
Рис. 40. Центральное проецирование
Центральную проекцию часто называют перспективой. Примерами центральной проекции являются фотоснимки и кинокадры, тени, отброшенные от предмета лучами электрической лампочки и др. Центральные проекции применяют в рисовании с натуры.
Если проецирующие лучи параллельны друг другу (рис. 41), то проецирование называется параллельным. а полученная проекция — параллельной. Примером параллельной проекции можно условно считать солнечные тени предметов (рис. 39).
Строить изображение предмета в параллельной проекции проще, чем в центральной. В черчении такие проекции используются для построения чертежей и наглядных изображений.
При параллельном проецировании все лучи падают на плоскость проекций под одинаковым углом. Если это любой острый угол, как на рисунке 41, то проецирование называется косоугольным.
Рис. 41. Косоугольное проецирование
В том случае, когда проецирующие лучи перпендикулярны плоскости проекций (рис. 42), т. е. составляют с ней угол 90°, проецирование называют прямоугольным. Полученная при этом проекция называется прямоугольной.
Рис. 42. Прямоугольное проецирование
Прямоугольное проецирование широко используется для построения изображений на чертежах. Большинство чертежей в учебнике выполнено по этому способу.
- Какое проецирование называется центральным, параллельным, прямоугольным, косоугольным?
- Какой способ проецирования используется при построении чертежа и почему?
Основы проецирования
Проецированием называется процесс получения изображения предмета на плоскости.
Получившееся при этом изображение называют проекцией. Проекция – в переводе с латинского – «бросать (отбрасывать) вперёд».
В черчении изображения получают по так называемому методу проекций.
Чтобы построить изображение предмета по методу проекций, нужно через точки на предмете провести воображаемые лучи до встречи их с плоскостью. Эти лучи называются проецирующими. Плоскость, на которой получается изображение предмета, называется плоскостью проекций.
Если проецирующие лучи расходятся из одной точки, проецирование называется центральным (рис. 60а). Точка, из которой выходят лучи, называется центром проецирования.
Полученное при этом изображение называется центральной проекцией. Пример: тени, отброшенные от предмета лучами электрической лампочки.
Если проецирующие лучи параллельны друг другу, то проецирование называется параллельным (рис. 60б), а полученное изображение – параллельной проекцией. Пример: солнечные тени.
Рис. 60
При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом. Если это любой острый угол, то проецирование называется косоугольным (рис. 61а). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются.
Когда проецирующие лучи перпендикулярны к плоскости проекций, проецирование называют прямоугольным (рис. 61б), а полученное изображение – прямоугольной проекцией.
Рис. 61
Способ прямоугольного проецирования является основным в черчении.
Проецирование на одну, две и три взаимно перпендикулярные плоскости проекций
Расположим предмет перед плоскостью проекций так, чтобы на получившемся изображении были видны три его стороны (рис. 62).
Рис. 62
По такому изображению легко представить пространственный образ предмета.
Такое проецирование в черчении используют для построения наглядных изображений, однако, на наглядных изображениях предметы получают большие искажения и по ним трудно определить истинные размеры предмета.
Теперь расположим предмет перед плоскостью проекций так, чтобы на изображении была видна только одна его сторона, и построим его прямоугольную проекцию (рис. 63а).
На данном изображении проекции рёбер предмета, которые параллельны двум его измерениям (например: длина и ширина), равны натуральным размерам. Но на таком изображении нет третьего измерения предмета (высоты), поэтому оно не наглядно. Такие изображения используют в случаях, когда высота (толщина) детали одинакова во всех её точках (например, чертежи прокладок). Тогда на чертеже такой детали делают запись, указывающую её толщину (высоту). Пример приведен на рис. 63б (S4).
Иногда на одной плоскости изображают предметы, не имеющие одинаковой высоты во всех его точках. Тогда рядом с изображением точки числом указывают её высоту. Такие изображения называют проекциями с числовыми отметками (рис. 63в).
Рис. 63
Чтобы судить о трёх измерениях предмета, его необходимо спроецировать ещё на одну плоскость проекций (П2), которая параллельна другой паре измерений предмета. Тогда вторая плоскость будет расположена перпендикулярно первой плоскости проекций (рис. 64).
Рис. 64
Теперь по двум прямоугольным проекциям можно судить о размерах и форме предмета. Хотя форма не всегда ясно выражается двумя проекциями. Поэтому при изображении предметов сложной формы необходимо строить три (а иногда и более) прямоугольных проекции.
Возьмём три взаимно перпендикулярные плоскости проекций (рис. 65).
Одна из них занимает горизонтальное положение, её называют горизонтальной плоскостью проекций и обозначают П1. Две другие плоскости — вертикальные. Одну называют фронтальной плоскостью проекций (от французского слова «фронталь» – «лицом к зрителю»), другую – профильной плоскостью проекций (от французского слова «профиль» – «вид сбоку») и обозначают соответственно П2 и П3.
Линии пересечения плоскостей проекций называют осями проекций и обозначают буквами x, y, z. Точку пересечения осей проекций обозначают буквой О.
Рис. 65
В трёхгранный угол, образованный плоскостями проекций, поместим параллелепипед и, проведя проецирующие лучи перпендикулярно плоскостям проекций, получим его проекции. Изображение на плоскости П1 – горизонтальная проекция, на плоскости П2 и П3 – соответственно фронтальная и профильная проекции.
Для получения плоского чертежа трёхгранный угол «разрезают» по оси у, а плоскости П1 и П 3 поворачивают соответственно вокруг осей х и z по направлению, указанному на рис. 65а стрелками, до совмещения с плоскостью П 2 .
Совмещённые плоскости с построенными на них изображениями предмета показаны на рис. 65б. Линии, соединяющие между собой проекции, называют линиями связи. Линии связи всегда перпендикулярны осям проекций.
На чертежах плоскости проекций не ограничивают и не обозначают. Кроме того, на чертеже при изображении предмета можно не наносить и оси проекций, так как при параллельном проецировании расстояние от плоскости проекций до изображаемого предмета не влияет на очертание его проекций (рис. 66а).
Рис. 66
Это даёт возможность устанавливать произвольное расстояние между проекциями, сохраняя между ними проекционную связь даже при отсутствии линий связи (рис. 66б). Такой чертёж называется безосным. При построении проекций здесь пользуются осями симметрии предмета, центровыми линиями или характерными его плоскостями (рис. 67).
Рис. 67
Метод прямоугольного проецирования на две и три взаимно перпендикулярные плоскости был разработан французским учёным-геометром Гаспаром Монжем в конце XVIII века. Поэтому его называют ещё методом Монжа.
Г. Монж положил начало развитию новой науки об изображении предметов – начертательной геометрии.
Способы построения третьей проекции
Проекционную связь между горизонтальной и профильной проекциями можно установить несколькими графическими приёмами:
- дугой окружности (рис. 68а);
- с помощью прямой под углом 45° (рис. 68б);
- с помощью постоянной прямой чертежа (рис. 68в).
На рис. 68а,б,в эти приёмы показаны на примере построения третьей проекции точки.
Рис. 68
Удобнее всего пользоваться третьим способом, т.к. при наименьшем количестве графических операций достигается большая точность построения.
Если три вида уже построены, то место постоянной прямой чертежа произвольно выбирать нельзя. Нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии предмета. Через полученную точку К под углом 45° проводят отрезок прямой. Если осей симметрии на чертеже нет, то продолжают до пересечения в точке К1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 69).
Рис. 69
Как построить проекцию
Контрольные задания по теме: эпюр № 6
Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.
Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.
Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.
В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:
— изометрические, когда все три коэффициента искажения одинаковы (kx=ky=kz);
— диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (kx= kz ≠ky);
— триметрические, когда все три коэффициенты искажения не равны между собой (kx≠ky≠kz).
В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.
В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.
Изометрические оси изображены на рисунке 57.
Рисунок 57
Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О — получают направление оси Х. Таким же образом соединяют точку С с точкой О — получают направление оси Y.
Рисунок 58
Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.
Рисунок 59
Построение окружности в прямоугольной изометрической проекции
Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.
Размер большой оси эллипса 1,22d, малой 0,7d, где d — диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ — большая ось эллипса.
Рисунок 60
Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О1, О2, О3, О4, являющиеся центрами дуг овала (рисунок 61).
Для определения точек сопряжения проводят линии центров, соединяя О1, О2, О3, О4. из полученных центров О1, О2, О3, О4 проводят дуги радиусами R и R1. размеры радиусов видны на чертеже.
Рисунок 61
Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).
Рисунок 62
Штриховка и изометрической проекции
Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.
Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.
По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты kx=kz=1, ky=0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.
Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:
На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа – семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.
Рисунок 63
Построение диметрической проекции шестиугольника
Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П1 (рисунок 64).
Рисунок 64
На оси Х откладываем отрезок равный величине b, чтобы его середина находилась в точке О, а по оси Y – отрезок а, размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.
Рисунок 65
Построение окружности в диметрии
В прямоугольной диметрии все окружности изображаются эллипсами,
Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей – 0,35 d.
На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).
Через точку О – начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО1 и ОО2, равные по величине 1,06d. Точки О1 и О2 являются центром больших дуг овала. Для определения еще двух центров (О3 и О4) откладываем на горизонтальной прямой от точек А и В отрезки АО3 и ВО4, равные ¼ величины малой оси эллипса, то есть d.
Рисунок 66
Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 – радиусом до точек А и В (рисунок 67).
Рисунок 67
Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П2, рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О1, О2, О3, О4 – центры дуг овала (рисунок 68).
Из центров О3 и О4 описывают дугу радиусом R2=О3 М, а из центров О1 и О2 — дуги радиусом R1= О2 N
Рисунок 68
Штриховка а прямоугольной диметрии
Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).
Рисунок 69
- Какие виды аксонометрических проекций вы знаете?
- Под каким углом расположены оси в изометрии?
- Какую фигуру представляет изометрическая проекция окружности?
- Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
- Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
- Под какими углами расположены оси в диметрии?
- Какой фигурой будет являться диметрическая проекция квадрата?
- Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
- Основные правила нанесения штриховки в аксонометрических проекциях.
|