Как построить гиперболу

Гипербола: определение, функция, формула, примеры построения

В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.

  • Определение и функция гиперболы
  • Алгоритм построения гиперболы
    • Пример 1
    • Пример 2

Определение и функция гиперболы

Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:

  • x – независимая переменная;
  • k ≠ 0;
  • при k > 0 гипербола расположена в I и III четвертях координатной плоскости;
  • при k 0)
  • y = -x (при k Алгоритм построения гиперболы

Пример 1

Дана функция y = 4 /x. Построим ее график.

Решение

Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.

Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.

» data-lang=»default» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
0,5 8 1 4 2 2 4 1 8 0,5

Чтобы построить ветвь в третьей четверти, вместо x в формулу подставляем -x. Так мы вычислим значения y.

» data-lang=»default» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
-0,5 -8 -1 -4 -2 -2 -4 -1 -8 -0,5

Пример 2

Рассмотренный выше пример был одним из самых простых (без смещения асимптот). Давайте усложним задачу и построим гиперболу, заданную функцией ниже:

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.

Пример №2:
$$y=frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color >) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.



5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Обратная пропорциональность. Гипербола

Сейчас мы будем говорить об обратной пропорциональности, или другими словами об обратной зависимости, как о функции.

Мы закрепим понятие функции и научимся работать с коэффициентами и графиками.

А еще мы разберем несколько примеров построения графика функциигиперболы.

Обратная пропорциональность — коротко о главном

Определение:

Функция, описывающая обратную пропорциональность, – это функция вида ( displaystyle y=frac+b ), где ( kne 0), ( xne 0) и ( xne а)

По-другому эту функцию называют обратной зависимостью.

Область определения и область значений функции:

( Dleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или, что то же самое, ( Dleft( y right)=mathbbbackslash left< 0 right>)

( Eleft( y right)=left( -infty ;0 right)cup left( 0;+infty right)) или ( Eleft( y right)=mathbbbackslash left< 0 right>).

График обратной пропорциональности (зависимости) – гипербола.

Коэффициент ( displaystyle k)

( displaystyle k) – отвечает за «пологость» и направление графика. Чем больше этот коэффициент, тем дальше от начала координат располагается гипербола, и, следовательно, она менее круто «поворачивает» (см. рисунок).

Знак коэффициента ( displaystyle k) влияет на то, в каких четвертях расположен график:

если ( displaystyle k>0), то ветви гиперболы расположены в ( displaystyle I) и ( displaystyle III) четвертях;

если ( displaystyle k

Коэффициент ( displaystyle a)

Если внимательно посмотреть на знаменатель, видим, что ( displaystyle a) – это такое число, которому не может равняться ( displaystyle x).

То есть ( x=a) – это вертикальная асимптота, то есть вертикаль, к которой стремится график функции

Коэффициент ( b)

Число ( b) отвечает за смещение графика функции вверх на величину ( b), если ( b>0), и смещение вниз, если ( b

Пример 2

Здесь нужно вспомнить, как квадратный трехчлен раскладывается на множители (это подробно описано в теме «Разложение на множители»).

Напомню, что для этого надо найти корни соответствующего квадратного уравнения: ( displaystyle <^<2>>+4-5=0).

Я найду их устно с помощью теоремы Виета: ( displaystyle <_<1>>=-5), ( displaystyle <_<2>>=1). Как это делается? Ты можешь научиться этому, прочитав тему «Квадратные уравнения».

Итак, получаем: ( displaystyle <^<2>>+4-5=left( x+5 right)left( x-1 right)), следовательно:

Пример 3

Ты уже попробовал решить сам? В чем загвоздка?

Наверняка в том, что в числителе у нас ( displaystyle 2x), а в знаменателе – просто ( displaystyle x).

Это не беда. Нам нужно будет сократить на ( displaystyle left( x+2 right)), поэтому в числителе следует вынести ( displaystyle 2) за скобки (чтобы в скобках ( displaystyle x) получился уже без коэффициента):

Ответ: ( displaystyle y=2-frac<5>).

График обратной пропорциональности

Как всегда, начнем с самого простого случая: ( displaystyle y=frac<1>).

Таблица обратной пропорциональности (зависимости)

( displaystyle mathbf) ( displaystyle -3) ( displaystyle -2) ( displaystyle -1) ( displaystyle -0,5) ( displaystyle 0,5) ( displaystyle 1) ( displaystyle 2) ( displaystyle 3) ( displaystyle 4)
( displaystyle mathbf) ( displaystyle -frac<1><3>) ( displaystyle -frac<1><2>) ( displaystyle -1) ( displaystyle -2) ( displaystyle 2) ( displaystyle ;1) ( displaystyle frac<1><2>) ( displaystyle frac<1><3>) ( displaystyle frac<1><4>)

Нарисуем точки на координатной плоскости:

Теперь их надо плавно соединить, но как?

Видно, что точки в правой и левой частях образуют будто бы несвязанные друг с другом кривые линии. Так оно и есть.

Это график гиперболы и выглядит он так:

Этот график называется «гипербола» (есть что-то похожее на «параболу» в этом названии, правда?). Как и у параболы, у гиперболы две ветки, только они не связаны друг с другом.

Каждая из них стремится своими концами приблизиться к осям ( displaystyle Ox) и ( displaystyle Oy), но никогда их не достигает. Если посмотреть на эту же гиперболу издалека, получится такая картина:

Оно и понятно: так как ( displaystyle xne 0), график не может пересекать ось ( displaystyle Oy). Но и ( displaystyle yne 0), так что график никогда не коснется и оси ( displaystyle Ox).

Ну что же, теперь посмотрим на что влияют коэффициенты.

На что влияют коэффициенты

Рассмотрим такие функции:

Ух ты, какая красота!

Все графики построены разными цветами, чтобы легче было их друг от друга отличать.

Итак, на что обратим внимание в первую очередь?

Например, на то, что если у функции перед дробью стоит минус, то график переворачивается, то есть симметрично отображается относительно оси ( displaystyle Ox).

Второе: чем больше число в знаменателе, тем дальше график «убегает» от начала координат.

А что, если функция выглядит сложнее, например, ( displaystyle y=frac<1>+2)?

В этом случае гипербола будет точно такой же, как обычная ( displaystyle y=frac<1>), только она немного сместится. Давай думать, куда?

Чему теперь не может быть равен ( x)? Правильно, ( xne 1). Значит, график никогда не достигнет прямой ( x=1).

А чему не может быть равен ( y)? Теперь ( yne 2). Значит, теперь график будет стремиться к прямой ( y=2), но никогда ее не пересечет.

Итак, теперь прямые ( x=1) и ( y=2) выполняют ту же роль, которую выполняют координатные оси для функции ( displaystyle y=frac<1>).

Такие прямые называются асимптотами (линии, к которым график стремится, но не достигает их):

Более подробно о том, как строятся такие графики, мы выучим чуть позже.

А теперь попробуй решить несколько примеров для закрепления.

Примеры

1. На рисунке изображен график функции ( displaystyle y=frac). Определите ( k).

2. На рисунке изображен график функции ( displaystyle y=frac). Определите ( k)

3. На рисунке изображен график функции ( displaystyle y=frac<1>). Определите ( a).

4. На рисунке изображен график функции ( displaystyle y=frac<1>+a). Определите ( a).

5. На рисунке приведены графики функций ( displaystyle y=frac,text< >y=frac) и ( y=frac).

Способы построения гиперболы самостоятельно

  • Гипербола в математике — что это такое
  • Как построить гиперболу самостоятельно
  • Построение гиперболы по фокусам
  • Как построить гиперболу по точкам
  • Как построить график гиперболы по уравнению

Гипербола в математике — что это такое

Гипербола представляет собой линию, определяемую в некой декартовой прямоугольной системе координат каноническим уравнением:

Согласно записанному правилу, все точки гиперболы (|x| geq a) . Таким образом, данные точки расположены за пределами вертикальной полосы ширины (2a) , как показано на рисунке. Ось абсцисс канонической системы координат имеет точки пересечения с гиперболой. Координаты этих точек соответствуют: ((a, 0)) и ((-a, 0)) . Такие точки называют вершинами гиперболы.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Ось ординат не имеет общих точек с гиперболой. В состав гиперболы входят две части, которые не связаны между собой. Они носят название ветвей гиперболы. Числа «a» и «b» являются соответственно вещественной и мнимой полуосями гиперболы.

Ветви гиперболы — это две отдельные кривые, из которых состоит гипербола.

Ближайшие друг к другу точки двух ветвей гиперболы являются вершинами гиперболы.

Большая ось гиперболы — наименьшее расстояние между двумя ее ветвями.

Центр гиперболы — это середина ее большой оси.

Большая полуось гиперболы — расстояние, на которое удалены центр и одна из вершин, обозначается «а».

Фокальное расстояние гиперболы — расстояние, на которое удалены друг от друга центр и один из фокусов, обозначается «с».

Оба фокуса гиперболы расположены на продолжении большой оси и равноудалены от центра гиперболы.

Прямая, включающая в себя большую ось гиперболы, носит название действительной, или поперечной, оси гиперболы.

Прямая в виде перпендикуляра к действительной оси, которая пересекает центр гиперболы — мнимая, или сопряженная ось гиперболы.

Отрезок между фокусом гиперболы и гиперболой, который перпендикулярен к действительной оси, — это фокальный параметр.

Прицельный параметр — расстояние от фокуса до асимптоты гиперболы, обозначается «b».

Перицентрическое расстояние — расстояние, на которое фокус удален от ближайшей вершины гиперболы, обозначается (>r_

) .

Перечисленные характеристики гиперболы взаимосвязаны. Справедливы следующие соотношения:

Оси симметрии гиперболы представляют собой оси канонической системы координат, а начало канонической системы является центром симметрии.

Когда требуется исследовать форму гиперболы, следует начать с поиска ее пересечения с произвольной прямой, пересекающей начало координат. Уравнение прямой можно задать в виде:

Такой выбор связан с тем, что прямая (x=0 ) не пересекает гиперболу. Абсциссы точек пересечения можно вычислить с помощью уравнения:

Таким образом, при (b^<2>-a^<2>k^ <2>> 0) получим:

Полученное равенство позволит рассчитать координаты точек пересечения:

В данном случае:

Руководствуясь свойством симметрии, можно проанализировать смещение первой из точек при изменении k, как показано на рисунке.

Числитель дроби (ab/v) является постоянной величиной, а знаменатель характеризуется максимальным значением, если (k=0) . Таким образом, самую маленькую абсциссу имеет вершина ((a, 0)) . При увеличении (k ) знаменатель убывает, и x растет, стремясь к бесконечности, когда k приближается к числу (b/a) .

Прямая (y=bx/a) с угловым коэффициентом (b/a) не имеет точек пересечения с гиперболой, как и прямые с большими угловыми коэффициентами. Какая-либо прямая, обладающая меньшим положительным угловым коэффициентом, пересекает гиперболу.

При сдвиге прямой от горизонтального положения по часовой стрелке, k будет уменьшаться, (k^<2>) — увеличиваться, и прямая будет иметь удаляющиеся точки пересечения с гиперболой до тех пор, пока не займет положения с угловым коэффициентом (-b/a) .

К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a) : она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из вышесказанного следует вывод, что гипербола имеет вид, изображенный на рисунке.

Асимптоты гиперболы являются прямыми, описываемыми уравнениями (y=bx/a) и (y=-bx/a ) в канонической системе координат.

Предположим, что уравнения асимптот имеют вид:

Расстояния от точки (M(x, y)) до асимптот составят

В том случае, когда точка M расположена на гиперболе:

Произведение расстояний от точки гиперболы до асимптот является постоянным и соответствует (a^<2>b^<2>/(a^<2>+b^<2>)) .

Из данного определения можно вывести ключевое свойство, которым обладают асимптоты гиперболы.

В том случае, когда точка совершает движение по гиперболе таким образом, что ее абсцисса по абсолютной величине неограниченно возрастает, расстояние от точки до одной из асимптот стремится к нулю.

В действительности получим, что хотя бы одно из расстояний (h_<1>) или (h_<2>) при этих условиях должно неограниченно увеличиваться. Если предположить, что утверждение не справедливо, то произведение не было бы постоянной величиной.

Введем такое число с, что:

Фокусы гиперболы — точки (F_<1>) и (F_<2>) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат.

Отношение (varepsilon=c/a) , как и для эллипса, называется эксцентриситетом. У гиперболы (varepsilon > 1) .

Расстояния от произвольной точки (M(x, y)) на гиперболе до каждого из фокусов определяются абсциссой (x) :

Следует отметить, что равенства eqref можно представить в более подробной форме:

  • для правой ветви гиперболы ((x geq a): r_<1>=varepsilon x-a) , ( r_<2>=varepsilon x+a) ;
  • для левой ветви гиперболы ((x leq -a): r_<1>= a-varepsilon x) , ( r_<2>=-varepsilon x-a) .

Таким образом, для правой ветви (r_<2>-r_<1>=2a) , а для левой ветви (r_<1>-r_<2>=2a) . В обоих случаях:

Директрисы гиперболы — прямые, заданные в канонической системе координат уравнениями: (x=frac) , ( x=-frac) .

Директрисы расположены поблизости от центра в отличие от вершин. Из этого можно сделать вывод, что директрисы не имеют точек пересечения с гиперболой. Директриса и фокус, которые расположены по одну сторону от центра, считаются соответствующими друг другу.

Для того чтобы точка (M) была расположена на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы 2a.

С целью доказательства достаточности данного условия его следует записать в виде:

Следующие действия отличаются от доказательства соответствующего утверждения для эллипса только тем, что нужно воспользоваться равенством:

Для того чтобы точка была расположена на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету (varepsilon) .

Можно доказать, к примеру, необходимость условия для фокуса (F_<2>(-c, 0).) Предположим, что (M'(x, y)) является точкой гиперболы. Расстояние от (M’) до директрисы с уравнением (x=-a/varepsilon) равно:

Уравнение касательной к гиперболе в точке (M_<0>(x_<0>, y_<0>)) , которая принадлежит данной гиперболе, можно записать так же, как подобное уравнение в случае эллипса. Уравнение касательной к гиперболе:

Касательная к гиперболе в точке (M_<0>(x_<0>, y_<0>)) представляет собой биссектрису угла между отрезками, которые соединяют рассматриваемую точку с фокусами.

Как построить гиперболу самостоятельно

Построение графика гиперболы следует начать с изображения прямоугольной системы координат Декарта. Алгоритм действий:

  1. На листе бумаги нарисовать горизонтальную прямую. Выполнить действие следует таким образом, чтобы конец прямой с правой стороны был обозначен с помощью стрелки. Данная прямая является осью (X) и носит название абсциссы.
  2. На середине оси ( Х) необходимо опустить перпендикуляр. Конец полученной прямой в верхней части нужно обозначить стрелкой. В результате получена ось (Y) , которую называют ординатой.
  3. На следующем шаге необходимо пронумеровать шкалу. С правой стороны на оси (Х) расположены положительные значения (Х) в порядке возрастания — от 1 и выше. С левой стороны — отрицательные. В верхней части на оси (Y) расположены положительные значения (Y) в порядке возрастания. В нижней части — отрицательные.

Точка, в которой пересекаются абсцисса и ордината является началом координат, то есть числом 0. От данной точки следует откладывать все значения (Х) и (Y) .

С помощью прямоугольной системы координат плоскость поделена на четыре части, которые называют четвертями и нумеруют против часовой стрелки. Для того чтобы построить график, требуется определить точки. Каждая точка координатной плоскости определяется парой чисел ((x;y)) . Данные числа представляют собой координаты точки, где:

  • (х) — абсцисса точки;
  • (y) — ордината.

Гипербола представляет собой график функции, которая задана формулой:

где (k) — является каким-то коэффициентом, не равным нулю;

(x) — представляет собой независимую переменную.

Гипербола включает в себя две части, расположенные симметрично в разных четвертях. Данные части носят название ветвей гиперболы. При (k>0) , ветви расположены в 1 и 3 четвертях. При (k , ветви гиперболы размещены во 2 и 4 четвертях.

Принцип построения гиперболы можно рассмотреть на примере, когда функция задана следующей формулой:

Так как коэффициент 3 обладает положительным значением, гипербола, соответственно, будет находиться в 1 и 3 четвертях. Можно взять произвольно значения (Х) и найти значения (Y) . Таким образом, получатся координаты точек, с помощью которых можно изобразить гиперболу. Важно отметить, что (Х) не должно иметь нулевое значение, так как на 0 делить нельзя.

Поскольку мы знаем, что гипербола располагается в двух четвертях, то берем как положительные значения, так и отрицательные. Предположим, что (Х) равен: -6, -3, -1, 1, 3, 6. Далее можно рассчитать ординаты путем подстановки каждого значение (Х) в начальную формулу:

В результате, значения ( Y) равны: -0.5, -1, -3, 3, 1, 0.5.

Полученные 6 точек с координатами необходимо отложить на системе координат. Далее точки соединяют с помощью кривых линий, как изображено на рисунке. В итоге получилась гипербола.

Построение гиперболы по фокусам

Гиперболу можно построить, зная заданные вершины (А) и (В) и фокусное расстояние (FF1) . Алгоритм построения следующий:

  1. В первую очередь фокусное расстояние следует разделить пополам, чтобы получить точку 0.
  2. Далее с левой стороны от фокуса (F) можно отметить ряд произвольных точек 1, 2, 3, 4 и так далее, расстояние между которыми постепенно увеличивается.
  3. Затем нужно начертить вспомогательные окружности с центром в фокусе (F) , имеющие радиусы (R1=1B) , (R2=2B) , (R3=3B) , (R4=4B) и так далее.
  4. На следующем этапе можно изобразить вспомогательные окружности с центром в фокусе (F1) и радиусами (r1=1A) , (r2=2A) , (r3=3A) , (r4=4A) и так далее.
  5. При пересечении вспомогательных окружностей определяется положение точек гиперболы. (С) , (С1 ) представляют собой точки, которые образованы в результате пересечения окружностей радиусов (R1) и (r1) . Точки (D,D1) являются точками, в которых пересекаются окружности (R2) и (r2) .
  6. Полученные точки остается соединить с помощью плавной кривой линии, чтобы получить правую ветвь гиперболы.
  7. Аналогичным способом следует выполнить построение левой ветви гиперболы.

Гипербола — виды, правила и примеры построения функции

При упоминании термина «гипербола» человек с поэтическим складом мышления подумает о преувеличенном сопоставлении, в крайности доходящем до абсурда. Однако близкий к математике представит нечто подобное, и будет прав — в контексте нашего сегодняшнего разговора, конечно.

  • Что такое гипербола в математике
  • Асимптоты и фокусы гиперболы
  • Как построить график функции гиперболы
  • Эксцентриситет гиперболы
  • Равнобочная (равносторонняя) гипербола
  • Касательная и нормаль
  • Сопряженные гиперболы
  • Свойства гиперболы
  • Использование
  • Заключение

Перед вами родственные кривые, полученные при сечении конуса плоскостью. Парабола, эллипс (окружность), гипербола.

Что такое гипербола в математике

Это геометрическое место точек M, физическая разница расстояний от которых до выбранных (F1, F2), называемых фокусами, постоянна.

Оговоримся, что все сказанное относится к Евклидовой плоскости, где параллельные прямые не пересекаются.

Но если из отрезка |F1F2| соорудить координатную прямую X, за начальную точку взять середину (она же будет центром гиперболы) отрезка, то получим декартову систему координат. Где кривая описывается алгебраическим уравнением II-го порядка.

Получим классическую формулу аналитической геометрии:

где a – действительная полуось, b – мнимая.

Особенности:

поскольку x и y связаны квадратной зависимостью, обе оси будут осями симметрии;

пересечения с осью абсцисс (фокусов) с координатами ±a называются вершинами гиперболы, и расстояние между ними является минимальной дистанцией между ветвями (о последних ниже);

кратчайший отрезок от фокуса до вершины зовется перицентрическим расстоянием и пишется «rp».

Асимптоты и фокусы гиперболы

Фокусы находятся на оси X (из этого исходили). Расстояние до центра гиперболы (он же центр симметрии C) называется фокальным и обозначается «c». Его формула:

Умозрительно очевидно, что сечение конуса состоит из двух кривых. Называются они ветвями гиперболы. Также не подлежит сомнению то, что ветви ограничены воображаемой поверхностью. Фокусы всегда находятся внутри ветвей.

Помучившись с производными и пределами, получим формулы асимптот (прямые, расстояние до которых от кривой стремится к нулю на бесконечном удалении от «0»):

Дистанцию от фокуса до асимптоты зовут прицельным параметром и обозначают буквой «b».

Как построить график функции гиперболы

Существует много ресурсов, где можно онлайн наблюдать, как строится функция. Но нужно все уметь самому. Итак, давайте учиться.

Построим для примера график уравнения

По формуле выше выстраиваем асимптоты.

Отмечаем вершины х = ±2 (А1, А2). Приблизительный вид уже ясен.

При х = ±3, y = ±3,5 (примерно).

Эксцентриситет гиперболы

Эксцентриситетом считают величину:

Или, в иной записи:

Является параметром, характеризующим отклонение конического сечения от окружности:

кривые с равным эксцентриситетом подобны;

показатель угла наклона асимптот.

Равнобочная (равносторонняя) гипербола

Таковой кривая является при условии a = b. Если покрутить систему координат, функцию можно свести к виду:

Эксцентриситет данной конструкции составит квадратный корень из 2.

Иначе говоря, получаем график обратной пропорциональности:

Или «любимую» школьниками.

Коль уж речь зашла о школьном курсе, добавим сведений:

прямые x = 0, y = 0 – асимптоты;

область определения – все действительные числа, кроме 0;

область значений – все, за исключением 0;

функция нечетная, поскольку меняет знак при смене знака аргумента;

убывающая при положительных и отрицательных x.

Касательная и нормаль

В каждой точке гладкой кривой возможно построить касательную и нормаль (перпендикуляр). Гипербола – не исключение. Касательная – прямая, совпадающая с кривой только в одной точке (в пределах изгиба одного порядка).

Уравнение касательной в точке с координатами (xy) имеет вид:

Сопряженные гиперболы

Записанное таким образом уравнение даст сопряженную фигуру:

То есть с теми же асимптотами, но расположенную по-другому, с поворотом на 90°.

Пример на рисунке.

Свойства гиперболы

Их должен знать каждый школьник:

Касательная в произвольной точке H окажется биссектрисой угла F1HF2.

Кривая симметрична относительно осей и своего центра.

Отсеченный асимптотами отрезок касательной делится точкой соприкосновения пополам. Площадь же выделенного треугольника не меняется от изменения точки.

Использование

Где применяются знания о гиперболе:

для создания эллиптических и других координат;

в солнечных часах (сечение конуса света);

для анализа движения космических объектов.

Заключение

Непростая кривая с неожиданными в некоторых случаях применением. Что удивительно, задача о сечениях конуса была поставлена древнегреческими учеными во II-м веке до нашей эры. Это говорит о высочайшем уровне тогдашних инженеров.

Нет, солнечные часы понятно были, а мелких искусственных спутников не было точно. И астероиды не исследовали, но вопросы возникали. И были ответы без ссылок на многочисленных богов. Удивительные люди.

Алгебра. Урок 5. Графики функций

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Декартова система координат
  • Функция

Декартова система координат

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

Функция

Функция – это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .

Прямая

Линейная функция – функция вида y = a x + b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :

Если a > 0 , прямая будет проходить через I и III координатные четверти.

b – точка пересечения прямой с осью y .

Если a 0 , прямая будет проходить через II и IV координатные четверти.

b – точка пересечения прямой с осью y .

Если a = 0 , функция принимает вид y = b .

Отдельно выделим график уравнения x = a .

Важно : это уравнение не является функцией так как нарушается определение функции ( функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y ). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

Парабола

Графиком функции y = a x 2 + b x + c является парабола .

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a > 0 , ветки параболы направлены вверх.
  • Если a 0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y .
  2. Коэффициент b помогает найти x в – координату вершины параболы.
  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D > 0 – две точки пересечения.
  • Если D = 0 – одна точка пересечения.
  • Если D 0 – нет точек пересечения.

Гипербола

Графиком функции y = k x является гипербола .

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.

0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>

Если k 0, ветви гиперболы проходят через II и IV четверти.

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .

Квадратный корень

Функция y = x имеет следующий график:

Возрастающие/убывающие функции

Функция y = f ( x ) возрастает на интервале , если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Функция y = f ( x ) убывает на интервале , если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Для того, чтобы найти наибольшее значение функции , находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.

Для того, чтобы найти наименьшее значение функции , находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.

Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: