Как находить асимптоты

Асимптоты графика функции

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три. и бесконечно много. У каждой функции по разному.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ — это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ infty $, тогда наклонной асимптоты нет. А если $ b = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Примеры решений

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2 neq 0; 3x neq -2; x neq -frac<2> <3>$. Получили точку разрыва $ x = -frac<2> <3>$. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -frac<2> <3>$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = frac<5> <3>$ — горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x neq 0; x neq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ limlimits_ frac<1> <1-x>= frac<1> <0>= infty $$

Приступим к поиску наклонных асимптот.

Итого, $ y=0 $ — горизонтальная асимптота.

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$ y =frac<1><3>x $ — наклонная асимптота к функции с углом наклона одна третья.

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$ y = 0 $ — горизонтальная асимптота

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:


Вертикальная асимптота x=3

Горизонтальная асимптота y=1

Наклонная асимптота y=x

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции (y=frac<1><(x-1)(x+3)>)
ОДЗ: (xne left<-3;1right>)
(leftnotin D) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin lim_frac<1><(x-1)(x+3)>=frac<1><(-3-0-1)(-3-0+3)>=frac<1><-4cdot(-0)>=+infty\ lim_frac<1><(x-1)(x+3)>=frac<1><(-3+0-1)(-3+0+3)>=frac<1><-4cdot(+0)>=-infty end Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) — точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin lim_frac<1><(x-1)(x+3)>=frac<1><(1-0-1)(1-0+3)>=frac<1><-0cdot 4>=-infty\ lim_frac<1><(x-1)(x+3)>=frac<1><(1+0-1)(1+0+3)>=frac<1><+0cdot 4>=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_1=1) — точка разрыва 2-го рода.
Вывод: у функции (y=frac<1><(x-1)(x+3)>) две точки разрыва 2-го рода (left), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac<1><(x-1)(x+3)>)
Ищем предел функции на минус бесконечности: begin lim_frac<1><(x-1)(x+3)>=frac<1><(-infty)(-infty)>=+0 end На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin lim_frac<1><(x-1)(x+3)>=frac<1><(+infty)(+infty)>=+0 end На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac<1><(x-1)(x+3)>) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции (y=frac<1><(x-1)(x+3)>):

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac), очевидно, есть вертикальная асимптота x=1. При этом: begin lim_frac=-infty, lim_frac=+infty end

График асимптотического поведения функции (y=frac):

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

Читайте также  Как сделать царскую водку

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac<4x> )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin lim_frac<4x><(x+1)(x-1)>=frac<4(-1-0)><(-1-0+1)(-1-0-1)>=frac<-4><-0cdot(-2)>=-infty\ lim_frac<4x><(x+1)(x-1)>=frac<4(-1+0)><(-1+0+1)(-1+0-1)>=frac<-4><+0cdot(-2)>=+infty end Точка (x=-1) — точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin lim_frac<4x><(x+1)(x-1)>=frac<4(1-0)><(1-0+1)(1-0-1)>=frac<4><2cdot(-0)>=-infty\ lim_frac<4x><(x+1)(x-1)>=frac<4(1+0)><(1+0+1)(1+0-1)>=frac<4><2cdot(+0)>=+infty end Точка (x=1) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)

График асимптотического поведения функции (y=frac<4x>)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_e^>=e^0=1\ b_2=lim_e^>=e^0=1\ b=b_1=b_2=1 end Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции (y=e^>)

в) ( y=frac )
Заметим, что ( frac=frac<(x+1)(x-1)>=frac<(x^2)(x+1)><(x+1)(x-1)>=frac ) $$ y=fracLeftrightarrow begin y=frac\ xne -1 end $$ График исходной функции совпадает с графиком функции (y=frac), из которого необходимо выколоть точку c абсциссой (x=-1).

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin k_1=lim_frac=left[fracright]=lim_fracright)>=frac<1+0><1-0>=1\ k_2=lim_frac=left[fracright]=lim_fracright)>=frac<1+0><1-0>=1\ k=k_1=k_2=1 end У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin b=lim_(y-kx)= lim_left(frac-2right)= lim_frac= lim_frac=left[fracright]=\ =lim_frac=frac<1+0><1-0>=1 end Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac)

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_xe^<2-x>>=-inftycdot e^0=-infty\ b_2=lim_xe^<2-x>>=+inftycdot e^0=+infty end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции (y=xe^<2-x>>)

Асимптота графика функции: определение, как искать

  • Что такое асимптота — понятие и определение
  • Асимптоты графика функции, основные виды
  • Вертикальные асимптоты
    • Пример 1
    • Пример 2
  • Наклонные асимптоты
    • Пример 1
    • Пример 2
  • Горизонтальные асимптоты
    • Пример 1
    • Пример 2
    • Пример 3

Что такое асимптота — понятие и определение

Асимптота графика функции у=f (x) представляет собой прямую L, максимально приближающеюся к графику функции, точка которого стремится к бесконечности, то есть неограниченно удаляется от начала координат по кривой. Расстояние между этой точкой функции у=f(x) и асимптотой L стремится к нулю.

На рисунке приведены примеры асимптот графиков функций.

На рисунке слева продемонстрирована кривая, которая приближается к асимптоте и остается с одной стороны по отношению к ней.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

На рисунке справа представлена кривая (график функции), которая пресекает асимптоту бесконечное множество раз с разных сторон

Асимптоты графика функции, основные виды

Асимптоты делятся на три вида: вертикальные, наклонные и горизонтальные.

У разных функции в наличии может быть различное количество асимптот:

  1. Парабола и синусоида не имеют асимптот.
  2. Экспоненциальная и логарифмическая функции имеют 1 асимптоту.
  3. Арктангенс и арккотангенс — две.
  4. Тангенс и котангенс — бесконечное количество.
  5. Гипербола имеет горизонтальную и вертикальную асимптоты.

Приведем пример нахождения асимптот гиперболы.

Гипербола — геометрическое место расположения точек, от которых абсолютная величина разности растояний до двух фокусов (заданных точек), является постоянной и меньшей, чем расстояние между самими фокусами.

Асимптоты гиперболы — прямые, которые тесто связаны с ней и определяются уравнениями (y=frac bax) и (-y=frac bax) .

При (xrightarrow+infty) разность ординат асимптоты и гиперболы будет (deltarightarrow0) .

Это действительно, так как:

Следовательно, если абсцисса х неограниченно возрастает, то график гиперболы и ее асимптота неограниченно сближаются.

Расположение асимптот гиперболы соответствует диагоналям прямоугольника, стороны которого параллельны оси Ох и оси Оу, а центром служит начало координат.

В равносторонней гиперболе, имеющей вид (x^2-y^2=a^2) , когда (b=a) , асимптоты будут иметь угловые коэффициенты (k=pmfrac ba) , равные (pm1) . Свойством этих асимптот является взаимная перпендикулярность. Они также делят пополам углы между осями симметрии гиперболы.

Пример

Необходимо составить уравнение гиперболы, если следующие уравнения задают ее асимптоты:

Гипербола проходит через точку М(6; -4).

Решение

Применим формулу (y=frac bax) и получим:

Подставим координаты точки М в общую формулу уравнения гиперболы:

Получим систему уравнений. Чтобы получить уравнение данной гиперболы, необходимо вычислить полученную систему уравнений.

В итоге получим:

Вертикальные асимптоты

Если хотя бы один из пределов (lim_f(x)) или (lim_f(x)) является равным +∞ или —∞, то вертикальной асимптотой графика функции у=f(x) будет являться прямая х=с.

Другое определение подразумевает, что если в определении асимптоты х0 является конечным числом, то такая асимптота является вертикальной. При этом в точке левый или правый предел (или оба) равны +∞ или -∞.

Примеры вертикальных асимптот:

Пример 1

Необходимо определить вертикальную асимптоту функции (lim_a(x)=0.)

Решение

то x=0 — вертикальная асимптота.

Пример 2

Ось ординат является вертикальной асимптотой, так как

Наклонные асимптоты

Если в определении асимптоты присутствует +∞ или —∞, то она относится либо к горизонтальной, либо к наклонной.

Асимптота графика функции у=f(x) является наклонной, если эту функцию можно представить в виде f(x)=kx+b+а(х). При этом должно выполняться условие: (a(x)rightarrow0) при (xrightarrow+infty) . Прямая будет иметь вид y=kx+b.

Прямая у=kx+b будет наклонной асимптотой при (xrightarrow+infty) и (xrightarrow-infty) , если существуют пределы:

Если k=0, то наклонная асимптота превращается в горизонтальную.

Применение правила Лопиталя

Правило Лопиталя применяется, когда границы не определены, например, 0/0 или ∞/∞:

Если функции можно дифференцировать, и они относятся к окрестностям точки x=a, тогда наклонную асимптоту необходимо искать по формуле:

Производная может применяться многократно для получения константы в числителе или знаменателе.

Пример 1

Прямая у=х — наклонная асимптота графика данной функции.

Пример 2

Рассмотрим два варианта:

То есть правая ветвь кривой имеет наклонную асимптоту в виде прямой у=х-2.

То есть левая ветвь кривой имеет наклонную асимптоту в виде прямой у=-х+2.

Горизонтальные асимптоты

Прямая y=b является горизонтальной асимптотой для графика функции y=f(x), если

При (xrightarrow+infty) или при (xrightarrow-infty) , когда только один из представленных пределов равен числу b, прямая y=b становится горизонтальной асимптотой не всей кривой, а соответствующей ее части.

Пример 1

Имеется функция: (y=4+frac1x.)

поэтому y=4 — горизонтальная асимптота данной функции.

Пример 2

Значит, у=1 — горизонтальная асимптота графика функции.

Пример 3

то y=0 — горизонтальная асимптота графика функции при (xrightarrow+infty) .

Асимптоты

Вертикальная асимптота.

Если выполнено хотя бы одно из условий
$$
lim_-0>f(x)=infty,qquadlim_+0>f(x)=infty,nonumber
$$
то прямую (x=x_<0>) называют вертикальной асимптотой графика функции (y=f(x)).

Например, прямая (x=0) — вертикальная асимптота графиков функций (y=displaystyle frac<1>), (y=operatornamex^2), (y=displaystyle frac<1>>), (y=operatornamex), прямая (x=-1) — вертикальная асимптота графика функции (y=displaystyle frac<3-2x>), прямые (x=displaystyle frac <2>+pi k (kin mathbb)) — вертикальные асимптоты графика функции (y=operatornamex).

Функции и их асимптоты

Асимптота Функция График функции
(x=0) (y=displaystyle frac<1>)
(y=operatornamex^2)
(y=displaystyle frac<1>>)
(y=operatornamex)
(x=-1) (y=displaystyle frac<3-2x>)

Асимптота (невертикальная асимптота).

Прямую
$$
y=kx+bnonumber
$$
называют асимптотой (невертикальной асимптотой) графика функции (y=f(x)) при ( xrightarrow+infty), если
$$
lim_(f(x)-(kx+b))=0.label
$$
Если (kneq 0), то асимптоту называют наклонной, а если (k=0), то асимптоту (y=b) называют горизонтальной.

Аналогично вводится понятие асимптоты при (xrightarrow-infty).

Например, прямая (y=0) — горизонтальная асимптота графиков функции (y=displaystyle frac<1>), (y=displaystyle frac<1>>) при (xrightarrow +infty) и (xrightarrow -infty), графика функции (y=a^x, a > 1)), при (xrightarrow -infty). Прямая (y=1) — асимптота графиков функций (y=e^<1/x>), (y=operatorname

x) и (y=operatornamex) (см.график ниже) при (xrightarrow +infty); прямая (y=displaystyle frac<2>) — асимптота графика функции (y=operatornamex) при (xrightarrow +infty) (см.график ниже), а прямая (y=pi) — асимптота графика функции (y=operatornamex) при (xrightarrow -infty).

Функции и их асимптоты

Асимптота Функция График функции
(y=1) (y=e^<1/x>)
(y=operatorname x)
(y=operatornamex)
(y=displaystyle frac<2>) (y=operatornamex)
(y=pi) (y=operatornamex)

Найти асимптоту при (xrightarrow+infty) и (xrightarrow-infty) графика функции:

  1. (triangle) Так как (y=-2+displaystyle frac<5>), то прямая (y=-2) — асимптота графика (y=displaystyle frac<3-2x>) (рис. 9.4) при (xrightarrow+infty) и (xrightarrow-infty).
    (y=displaystyle frac<3-2x>)
  2. Разделив числитель (x^<3>) на знаменатель ((x+1)^2) по правилу деления многочленов (можно воспользоваться равенством (x^<3>=((x+1)-1)^<3>=(x+1)^<3>-3(x+1)^<2>+3(x+1)-1)), получим
    $$
    frac><(x+1)^<2>>=x-2+frac<3x+2><(x+1)^<2>>.label
    $$
    Отсюда следует, что асимптотой графика функции (y=displaystyle frac><(x+1)^<2>>) при (xrightarrow+infty) и (xrightarrow-infty) является прямая (y=x-2).
  3. Используя равенство (y=displaystyle sqrt[3]+x^<2>>=xleft(1+frac<1>right)^<1/3>) и локальную формулу Тейлора, получаем (y=xleft(1+displaystyle frac<1><3x>+oleft(frac<1>right)right)=x+frac<1><3>+o(1)) при (xrightarrow 0), откуда следует, что прямая (y=x+displaystyle frac<1><3>) — асимптота графика функции (y=sqrt[3]) при (xrightarrow+infty) и (xrightarrow-infty).
  4. Применяя формулу Тейлора для экспоненты, получаем (y=left(x-displaystyle frac<4>right)left(1-frac<5><3x>+oleft(frac<1>right)right)=x-frac<5><3>+o(1)) при (xrightarrow infty), откуда следует, что (y=x-displaystyle frac<5><3>) — асимптота графика данной функции при (xrightarrow+infty) и (xrightarrow-infty). (blacktriangle)

Для того, чтобы прямая (y=kx+b) была асимптотой графика функции (y=f(x)) при ( xrightarrow+infty), необходимо и достаточно, чтобы существовали конечные пределы
$$
lim_frac=k,label
$$
$$
displaystyle lim_(f(x)-kx)=b.label
$$

(circ) Необходимость. Если прямая (y=kx+b) — асимптота графика функции (y=f(x)) при (xrightarrow+infty), то выполняется условие eqref или равносильное ему условие
$$
f(x)=kx+b+alpha(x),quad alpha(x)rightarrow 0 quad при quad xrightarrow +infty.label
$$
Разделив обе части равенства eqref на (x), получим
$$
frac=k+frac+frac,nonumber
$$
откуда следует, что существует предел eqref.

Из равенства eqref получаем
$$
f(x)-kx=b++alpha(x), где alpha(x)rightarrow 0 при xrightarrow+infty,nonumber
$$
откуда следует, что существует предел eqref.

Достаточность. Если существуют конечные пределы eqref и eqref, то (f(x)-(kx+b)=alpha(x)), где (alpha(x)rightarrow 0) при (xrightarrow+infty), то есть выполняется условие eqref. Это означает, что прямая (y=kx+b) — асимптота графика функции (y=f(x)) . (bullet)

Для случая горизонтальной асимптоты данная теорема формулируется в следующем виде: для того, чтобы прямая (y=b) была асимптотой графика функции (y=f(x)) при (xrightarrow+infty), необходимо и достаточно, чтобы (displaystyle lim_f(x)=b).

Как находить асимптоты

Высшая математика — лекции, конспекты, задачи с решениями

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Итак, для нахождения вертикальных асимптот графика данной функции нужно исследовать точки разрыва функции и точки, лежащие на границах области определения функции, и выяснить, при приближении аргумента к каким из этих точек значения функции стремятся к бесконечности.

Наклонной асимптотой графика функции при называется прямая , если
1) некоторый луч целиком содержится в ;
2) расстояние по вертикали между графиком и прямой стремится к 0 при :

В случае, если наклонная асимптота расположена горизонтально, то есть при , она называется горизонтальной асимптотой . Таким образом, горизонтальная асимптота — частный случай наклонной асимптоты; прямая является горизонтальной асимптотой графика при или , если

Однако эта функция не определена ни на каком луче вида , так что её график не может иметь асимптоты при .

Аналогично определению наклонной асимптоты можно дать также более общее определение:

Если функция — линейная, то есть график — наклонная прямая, то асимптотическая линия — это наклонная асимптота. Однако и другие линии бывает естественно рассматривать в качестве асимптотических.

Рис. 7 . 10 .Асимптотическая линия для графика функции при

Вернёмся к наклонным асимптотам — прямым линиям с уравнением . Для их нахождения в тех случаях, когда значения и не очевидны, можно применять следующую теорему.

Таким образом, для нахождения наклонной (или горизонтальной, если получится ) асимптоты достаточно найти два указанных предела и, затем, . Прямая будет искомой асимптотой. Если же какой-либо из этих двух пределов не существует, то нет и соответствующей асимптоты.

Доказательство теоремы. Докажем теорему в случае ; доказательство при проводится совершенно аналогично.

Перепишем условие (7.1), задающее асимптоту, в виде

Так как первый множитель , то второй множитель, стоящий в квадратных скобках, должен быть бесконечно малым, то есть

откуда следует равенство (7.2). Теперь число уже известно.

Подставляя это число в формулу (7.1), находим, что

откуда следует равенство (7.3).

Попробуем отыскивать сразу оба предела, и при , и при .

Итак, и при , и при имеем и , так что обе наклонные асимптоты совпадают друг с другом и имеют уравнение , то есть, фактически, асимптота только одна.

Различными могут оказаться и не обязательно горизонтальные асимптоты:

Сначала найдём асимптоту при . Согласно доказанной теореме, имеем:

Таким образом, при наклонной асимптотой служит прямая .

Теперь найдём асимптоту при . Имеем:

Поскольку , мы можем считать, что в допредельном выражении . В полученной дроби поделим числитель и знаменатель на положительное число . Тогда под корнем нужно будет поделить на , и получится:

Вычисление проведите сами в качестве упражнения. При этом получается , так что наклонная асимптота при имеет уравнение .

то . Иными словами, если угловой коэффициент касательной имеет предел, то этот предел равен угловому коэффициенту асимптоты 17 .

Однако асимптота может существовать и в случае, когда производная не имеет никакого предела при . Дело в том, что значения могут совершать мелкие, но частые колебания относительно ординаты асимптоты, так что значения производной могут при этом испытывать незатухающие колебания. Проиллюстрируем эту возможность следующим примером.

Пример 7 . 13 Рассмотрим функцию . Очевидно, что прямая — это асимптота графика при , так как первое слагаемое имеет предел, равный 0, при . Однако вычисление производной даёт

а эта функция при росте совершает колебания, причём при больших второе слагаемое становится пренебрежимо малым, и значения колеблются примерно между и 3. Следовательно, производная не имеет предела при .

Если же рассмотреть функцию , то её производная оказывается даже неограниченной на любом луче вида

Задачи, приводящие к дифференциальным уравнениям. Обыкновенное дифференциальное уравнения (ОДУ). Интегрирование в квадратурах. Фазовое пространство. Изоклины. Интегральная кривая. Задача Коши для ОДУ. Теорема существования и единственности решения задачи Коши. Общее и частное решения. ОДУ высших порядков. Понижение порядка. Краевая задача. Однородное и неоднородное ОДУ, принцип суперпозиции решений. Фундаментальная система решений, определитель Вронского. Метод Лагранжа вариации произвольных постоянных. Построение фундаментальной системы решений по корням характеристического уравнения. Системы ОДУ.

Асимптота

Содержание

Виды асимптот графиков

Вертикальная

Вертикальная асимптота — прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

Горизонтальная

Горизонтальная асимптота — прямая вида при условии существования предела

.

Наклонная

Наклонная асимптота — прямая вида при условии существования пределов

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что

  1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.
  2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

Нахождение асимптот

Порядок нахождения асимптот

  1. Нахождение вертикальных асимптот.
  2. Нахождение двух пределов
  3. Нахождение двух пределов :

если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .

Наклонная асимптота — выделение целой части

Также наклонную асимптоту можно найти, выделив целую часть. Например:

Дана функция .

Разделив нацело числитель на знаменатель, получим:

.

При , , то есть:

,

и является искомым уравнением асимптоты.

Свойства

  • Среди конических сечений асимптоты имеют только гиперболы. Асимптоты гиперболы как конического сечения параллельны образующим конуса, лежащим в плоскости, проходящей через вершину конуса параллельно секущей плоскости [4] . Максимальный угол между асимптотами гиперболы для данного конуса равен углу раствора конуса и достигается при секущей плоскости, параллельной оси конуса.

См. также

Примечания

  1. Двойное ударение поставлено согласно БСЭ и Советскому энциклопедическому словарю.
  2. Математическая энциклопедия (в 5 томах). — М .: Советская Энциклопедия, 1982. — Т. 1.
  3. Математический энциклопедический словарь — М.: Советская энциклопедия, 1988. — 847 с.
  4. Taylor C.Geometrical Conics; Including Anharmonic Ratio and Projection, With Numerous Examples. — Cambridge: Macmillan, 1863. — С. 170.

Литература

  • Рашевский П. К. Курс дифференциальной геометрии, 4-е изд. М., 1956.
  • Графики функций: Справочник / Вирченко Н. А., Ляшко И. И., Швецов К. И. — Киев: Наук. думка, 1979, — 320 с.

Ссылки

Асимптота на Викискладе ?
  • Асимптота // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.

  • Викифицировать статью.
  • Исправить статью согласно стилистическим правилам Википедии.
  • Переработать оформление в соответствии с правилами написания статей.

Wikimedia Foundation . 2010 .

  • Нарочь (озеро)
  • Аффинная геометрия

Полезное

Смотреть что такое «Асимптота» в других словарях:

АСИМПТОТА — (от греч. a отриц. част., и symptotos совпадающий вместе). Прямая линия, постоянно приближающаяся к кривой и встречающаяся с ней только в бесконечности. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АСИМПТОТА от… … Словарь иностранных слов русского языка

АСИМПТОТА — (от греческого asymptotos несовпадающая), прямая, к которой бесконечная ветвь кривой приближается неограниченно, например асимптота гиперболы … Современная энциклопедия

АСИМПТОТА — (от греч. asymptotos несовпадающий) кривой с бесконечной ветвью прямая, к которой эта ветвь неограниченно приближается, напр., асимптота гиперболы … Большой Энциклопедический словарь

асимптота — Прямая линия, к которой постепенно приближается кривая. [http://www.morepc.ru/dict/] асимптота Прямая, к которой стремится (никогда не достигая ее) имеющая бесконечную ветвь кривая некоторой функции, когда ее аргумент неограниченно возрастает или … Справочник технического переводчика

Асимптота — (от греческого asymptotos несовпадающая), прямая, к которой бесконечная ветвь кривой приближается неограниченно, например асимптота гиперболы. … Иллюстрированный энциклопедический словарь

АСИМПТОТА — жен., геом. прямая черта, вечно близящаяся к кривой (гиперболе), но никогда с нею не сходящаяся. Пример, для объяснения этого: если какое либо число все делить пополам, то оно будет умаляться до бесконечности, но никогда не сделается нулем.… … Толковый словарь Даля

асимптота — сущ., кол во синонимов: 1 • линия (182) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Асимптота — (от греч. слов: a, sun, piptw) несовпадающая. Подасимптотой подразумевается такая линия, которая, будучи неопределеннопродолжена, приближается к данной кривой линии или к некоторой ее частитак, что расстояние между общими линиями делается менее… … Энциклопедия Брокгауза и Ефрона

Асимптота — поверхности называется прямая линия, пересекающаяповерхность по крайней мере в двух бесконечно удаленных точках … Энциклопедия Брокгауза и Ефрона

АСИМПТОТА — (asymptote) Значение, к которому стремится данная функция при изменении аргумента (argument), но не достигает его ни при одном конечном значении аргумента. Например, если общая стоимость выпуска х задается функцией ТС=а+bх, где а и b – константы … Экономический словарь

Асимптота — [asymptote] прямая, к которой стремится (никогда не достигая ее), имеющая бесконечную ветвь кривая некоторой функции, когда ее аргумент неограниченно возрастает или уменьшается. Например, в функции: y = c + 1/x значение y приближается с… … Экономико-математический словарь

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: