Какой металл самый тугоплавкий

Тугоплавкие металлы — характеристики, свойства и применение

Еще с конца 19 века были известны тугоплавкие металлы. Тогда им не нашлось применения. Единственная отрасль, где их использовали, была электротехника и то в очень ограниченных количествах. Но все резко поменялось с развитием сверхзвуковой авиации и ракетной техники в 50-е года прошлого столетия. Производству потребовались новые материалы, способные выдерживать значительные нагрузки в условиях температур свыше 1000 ºC.

Список и характеристики тугоплавких металлов

Тугоплавкость характеризуется повышенным значением температуры перехода из твердого состояния в жидкую фазу. Металлы, плавление которых осуществляется при 1875 ºC и выше, относят к группе тугоплавких металлов. По порядку возрастания температуры плавки сюда входят следующие их виды:

  • Ванадий
  • Хром
  • Родий
  • Гафний
  • Рутений
  • Вольфрам
  • Иридий
  • Тантал
  • Молибден
  • Осмий
  • Рений
  • Ниобий.

Современное производство по количеству месторождений и уровню добычи удовлетворяют только вольфрам, молибден, ванадий и хром. Рутений, иридий, родий и осмий встречаются в естественных условиях довольно редко. Их годовое производство не превышает 1,6 тонны.

Жаропрочные металлы обладают следующими основными недостатками:

  • Повышенная хладноломкость. Особенно она выражена у вольфрама, молибдена и хрома. Температура перехода у металла от вязкого состояния к хрупкому чуть выше 100 ºC, что создает неудобства при их обработке давлением.
  • Неустойчивость к окислению. Из-за этого при температуре свыше 1000 ºC тугоплавкие металлы применяются только с предварительным нанесением на их поверхность гальванических покрытий. Хром наиболее устойчив к процессам окисления, но как тугоплавкий металл он имеет самую низкую температуру плавления.

К наиболее перспективным тугоплавким металлам относят ниобий и молибден. Это связано с их распространённостью в природе, а, следовательно, и низкой стоимостью в сравнении с другими элементами данной группы.

Помимо этого, ниобий зарекомендовал себя как металл с относительно низкой плотностью, повышенной технологичностью и довольно высокой тугоплавкостью. Молибден ценен, в первую очередь, своей удельной прочностью и жаростойкостью.

Самый тугоплавкий металл встречаемый в природе — вольфрам. Его механические характеристики не падают при температуре окружающей среды свыше 1800 ºC. Но перечисленные выше недостатки плюс повышенная плотность ограничивают его область использования в производстве. Как чистый металл он применяется все реже и реже. Зато увеличивается ценность вольфрама как легирующего компонента.

Физико-механические свойства

Металлы с высокой температурой плавления (тугоплавкие) являются переходными элементами. Согласно таблице Менделеева выделяют 2 их разновидности:

  • Подгруппа 5A – тантал, ванадий и ниобий.
  • Подгруппа 6A – вольфрам, хром и молибден.

Наименьшей плотностью обладает ванадий – 6100 кгм3, наибольшей вольфрам – 19300 кгм3. Удельный вес остальных металлов находится в рамках этих значений. Эти металлы отличаются малым коэффициентом линейного расширения, пониженной упругостью и теплопроводностью.

Данные металлы плохо проводят электрический ток, но обладает таким качеством как сверхпроводимость. Температура сверхпроводящего режима составляет 0,05-9 К исходя из вида металла.

Абсолютно все тугоплавкие металлы отличаются повышенной пластичностью в комнатных условиях. Вольфрам и молибден помимо этого выделяются на фоне остальных металлов более высокой жаропрочностью.

Коррозионная стойкость

Жаропрочным металлам свойственна высокая стойкость к большинству видов агрессивных сред. Сопротивление коррозии элементов 5A подгрупп увеличивается от ванадия к танталу. Как пример, при 25 ºC ванадий растворяется в царской водке, между тем как ниобий полностью инертен по отношению к данной кислоте.

Тантал, ванадий и ниобий отличаются устойчивостью к воздействию расплавленных щелочных металлов. При условии отсутствия в их составе кислорода, которые значительно усиливает интенсивность протекания химической реакции.

Молибден, хром и вольфрам имеют большую сопротивляемость к коррозии. Так азотная кислота, которая активно растворяет ванадий, значительно менее воздействует на молибден. При температуре 20 ºC данная реакция вообще полностью останавливается.

Все тугоплавкие металлы охотно вступают в химическую связь с газами. Поглощение водорода из окружающей среды ниобием осуществляется при 250 ºC. Тантал при 500 ºC. Единственный способ остановить эти процессы – проведение вакуумного отжига при 1000 ºC. Стоит заметить, что вольфрам, хром и молибден куда менее склонны к взаимодействию с газами.

Как уже было сказано ранее, лишь хром отличается сопротивляемостью к окислению. Данное свойство обусловлено его способностью образовывать твердую пленку оксида хрома на своей поверхности. Растворение кислорода хромом происходит только при 700 С. У остальных тугоплавких металлов процессы окисления начинаются ориентировочно при 550 ºC.

Хладноломкость

Распространению использования жаропрочных металлов в производстве мешает обладание ими повышенной склонности к хладноломкости. Это означает, что при падении температуры ниже определенного уровня происходит резкое возрастание хрупкости металла. Для ванадия такой температурой служит отметка в -195 ºC, для ниобия -120 ºC, а вольфрама +330 ºC.

Наличие хладноломкости жаропрочными металлами обусловлено содержанием примесями в их составе. Молибден особой чистоты (99,995%) сохраняет повышенные пластические свойства вплоть до температуры жидкого азота. Но внедрение всего 0,1% кислорода сдвигает точку хладноломкости к -20 С.

Области применения

До середины 40-х годов тугоплавкие металлы использовались только как легирующие элементы для улучшения механических характеристик стальных цветных сплавов на основе меди и никеля в электропромышленности. Соединения молибдена и вольфрама применялись также в производстве твердых сплавов.

Техническая революция, связанная с активным развитием авиации, ядерной промышленности и ракетостроения, нашла новые способы использования тугоплавких металлов. Вот неполный перечень новых сфер применения:

  • Производство тепловых экранов головного узла и каркасов ракет.
  • Конструкционный материал для сверхзвуковых самолётов.
  • Ниобий служит материалом сотовой панели космических кораблей. А в ракетостроении его используют в качестве теплообменников.
  • Узлы термореактивного и ракетного двигателя: сопла, хвостовые юбки, лопатки турбин, заслонки форсунок.
  • Ванадий является основой для изготовления тонкостенных трубок тепловыделяющих элементов термоядерного реактора в ядерной промышленности.
  • Вольфрам применяется как нить накаливания электроламп.
  • Молибден все шире и шире используется в производстве электродов, применяемых для плавки стекла. Помимо этого, молибден — металл, используемый для производства форм литья под давлением.
  • Производство инструмента для горячей обработки деталей.

Оцените статью:

Какой металл считается самым тугоплавким?

Металл с давних времён используются человеком в различных сферах деятельности. Чтобы получить качественное металлическое изделие, важно подобрать хороший материал, оценивая при этом его характеристики. Важный параметр — тугоплавкость. Для изготовления некоторых изделий подходят только самые тугоплавкие металлы.

Кольца из вольфрама

Исторические сведения

Прежде чем изучать характеристики самых тугоплавких металлов в мире следует ознакомиться с их историей открытия. Металлообработка известна человеку несколько тысяч лет. Однако активное получение тугоплавких металлов началось только со второй половины 19 века.

Изначально они использовались только в электротехнике. С появлением новых технологий в строении самолётов, машин, поездов и ракет детали с высоким показателем плавления начали использоваться активнее. Пик популярности заготовок, выдерживающих температуры более 1000 градусов, пришёлся на середину 20 века.

Определение

Тугоплавкий металл — отдельный класс, к которому относятся металлические заготовки, выдерживающие воздействие критически высоких температур. Обычно у представителей этого класса температура плавления более 1600 градусов, что считается точкой плавления железа. К ним относят благородные сплавы. Их ещё называют представителями платиновой группы.

Виды

Виды металлов и сплавов, обладающие устойчивостью к повышенным температурам:

  1. Вольфрам. Впервые о нем узнали в 1781 году. Чтобы расплавить, его потребовалось разогреть до 3380 градусов. Вольфрам считается самым тугоплавким. Изготавливается он из порошка, который обрабатывается химическим способом. Сначала смесь разогревается, а затем подвергается давлению. На выходе получаются спрессованные заготовки.
  2. Ниобий. Плавится при 2500 градусах. Обладает высокой теплопроводностью, обрабатывается не так сложно, как вольфрам. Изготавливается из порошка, который запекают и обрабатывают с помощью высокого давления. Из ниобия делают проволоку, трубы и ленту.
  3. Молибден. Визуально его можно спутать с вольфрамом. Изготавливается он из порошка при запекании и воздействии давлением. Как и вольфрам обладает парамагнетическими свойствами. Используется в радиоэлектронике, изготовлении промышленного оборудования, печей и электродов.
  4. Тантал. Плавится при 3000 градусах. Чтобы сделать проволоку из тантала или закалить материал, его не нужно нагревать до критических температур. Используется для изготовления элементов в радиоэлектронике (конденсаторы, пленочные резисторы). Популярен в ядерной промышленности.
  5. Рений. Материал, который ученые открыли позже остальных. Найти его можно в медной и платиновой руде. Используется на промышленном производстве, как легирующая добавка.

К материалам с высокими температурами плавления относится и хром. Благодаря своим уникальным характеристикам он применяется в различных сферах промышленности. Обладает повышенной устойчивостью к критическим температурам и коррозийным процессам. Однако стоит учитывать его хрупкость.

Свойства

Чтобы понимать, где лучше использовать материал, нужно знать свойства тугоплавких металлов. Из них изготавливаются детали для промышленного оборудования, техники и электроники. Характеристики тяжелых тугоплавких металлов будут описаны ниже.

Физические свойства

  1. Плотность — до 10000 кг/м3. У вольфрама этот показатель достигает 19000 кг/м3.
  2. Средняя температура плавления — 2500 градусов по Цельсию. Самая высокая температура плавления металла у вольфрама — 3390 градусов.
  3. Удельная теплоёмкость — 400 Дж.

Тугоплавкие предметы не выдерживают ударов и падений.

Химические свойства

  1. Это твердые вещества, обладающие высокой химической активностью.
  2. Прочная межатомная структура.
  3. Сопротивляемость длительному воздействию кислот и щелочей.
  4. Высокий показатель парамагнитности.

Эти материалы имеют некоторые недостатки. Главным из них является трудный процесс обработки и изготовления продукции из него.

Применение

Изначально тугоплавкие металлы использовались при изготовлении конденсаторов и транзисторов для радиоэлектроники. Количество их сфер применения увеличилось только к середине 20 века. Промышленной комплекс расширился до изготовления деталей для станков, автомобилей, самолётов и ракет.

Сплавы, выдерживающие воздействие критических температур, начали использоваться для изготовления посуды. Тугоплавкие металлы применяются в процессе производства строительных и соединительных материалов. Из них делают детали для бытовых приборов и электроники.

Читайте также  Как изменить логин в одноклассниках

Самым тугоплавким считается вольфрам. Его температура плавления в 3390 градусов превышает показатели других материалов. Однако нельзя забывать про то, что при падении вольфрамовой детали с высоты, она треснет или разобьётся на отдельные части.

Тугоплавкие металлы – список и их полезные свойства

Чтобы расплавить металлы этой группы, требуются сверхтемпературы. Самый известный – вольфрам, из которого сделана нить накаливания в лампочках. Другие члены «семейства» тоже востребованы.

  1. Что считать тугоплавким металлом
  2. Физико-химические характеристики
  3. Технология получения
  4. Сферы применения
  5. Классификация
  6. Основная группа
  7. Дополнительная группа

Что считать тугоплавким металлом

О признаке, по которому металл причисляют к группе, говорит название.

Тугоплавкие металлы – это химические элементы с температурой плавления выше большинства остальных:

  • В классическом понимании это более 2200°С. Таким свойством наделены пять металлов.
  • Однако термин «тугоплавкие» применяют и в отношении металлов с температурой плавления выше железа, т.е. от 1850°С. По этому параметру тугоплавкими металлами являются еще девять элементов.

Таким образом, список тугоплавких элементов включает 14 позиций.

Физико-химические характеристики

Главная характеристика группы – тугоплавкость – обеспечивается структурой атомов. Электроны располагаются так близко, что для разрыва межатомных связок требуется температура до двух тысяч градусов.

Вторая общая черта – замедленность деформации ползучести. Чтобы они начали «расползаться», требуется нагрев 1500+°C. В отличие от легкоплавких металлов, которые растекаются при паре сотен градусов.

Однако большинство свойств тугоплавких металлов (плотность, твердость, сопротивляемость сжатию) разнятся из-за принадлежности к разным группам и отличий в структуре кристаллической решетки.

Больше схожести в химических свойствах:

  • Легкость образования соединений с другими элементами, из-за чего обнаружить тугоплавы в чистом виде невозможно.
  • На воздухе покрываются защитной пленкой. Скорость определяется температурой.
  • При нагреве либо взаимодействии с газами (азотом, водородом, углеродом) первоначальные свойства утрачиваются, развивается коррозия, появляется хрупкость.
  • Устойчивость перед воздействием кислот.

Учитывая такие характеристики, с элементами работают в вакууме. Самый распространенный пример – вольфрамовая нить накаливания внутри бытовой лампочки.

Технология получения

Исходник большинства тугоплавов – руда.

  1. Из нее удаляют примеси.
  2. Рафинируют (восстанавливают нужный элемент). Способ восстановления зависит от требуемой степени чистоты металла. Поэтому задействуют дугообразную, электронно-лучевую либо плазменную плавку.
  3. Лучший продукт дает плазма. Он представляет собой мелкие гранулы, порошок либо заготовки (проволока, фольга, слитки, арматура, прокат).

Технология плавления специфична, поэтому таким сырьем занимаются специальные предприятия. В СССР их было всего два.

Обработка тугоплавких металлов возможна только методами порошковой металлургии.

Сферы применения

Применение тугоплавких металлов не ограничивается бытовыми лампочками.

Их свойства обеспечивают использование всеми отраслями промышленного комплекса, ВПК, в быту:

  • Металлургия. Компонент-лигатура для сплавов.
  • Судо-, авиа-, космостроение. Детали двигателей.
  • Ядерный сектор. Материал деталей реакторов.
  • Химпром. Катализатор, источник света.
  • Электроника. Конденсаторы.

Материал популярен как база жаропрочных, повышенно устойчивых конструкций (огнеупоров) для указанных отраслей. Особенно если требуются детали сложной конфигурации.

Особняком стоит выращивание рубинов. Для этого в бесцветный кристалл добавляют микродозы хрома.

Почти всегда применяются сплавы. Например, ядерщиками и строителями космических аппаратов востребована молибденово-танталово-вольфрамовая композиция. Она не деформируется при температурах порядка 4000°С, упруга, пластична, невосприимчива к ржавлению.

Классификация

В зависимости от температуры плавления тугоплавкие металлы причисляются к основной либо дополнительной группе.

Основная группа

Данный сегмент включает пять позиций: вольфрам, ниобий, тантал, молибден, рений. Плавятся при 2200°С+.

Свойства четвёртой группы элементов

Название Ниобий Молибден Тантал Вольфрам Рений
Температура плавления 2750 K (2477 °C) 2896 K (2623 °C) 3290 K (3017 °C) 3695 K (3422 °C) 3459 K (3186 °C)
Температура кипения 5017 K (4744 °C) 4912 K (4639 °C) 5731 K (5458 °C) 5828 K (5555 °C) 5869 K (5596 °C)
Плотность 8,57 г·см³ 10,28 г·см³ 16,69 г·см³ 19,25 г·см³ 21,02 г·см³
Модуль Юнга 105 ГПа 329 ГПа 186 ГПа 411 ГПа 463 ГПа
Твёрдость по Виккерсу 1320 МПа 1530 МПа 873 МПа 3430 МПа 2450 МПа

Молибден

Самый востребованный из тугоплавких элементов.

Сфера использования номер один – металлургия:

  • Молибденом «усиливают» сталь, чтобы получить твердый сплав.
  • На пару с нержавеющей сталью применяют как материал инфраструктуры трубопроводов, деталей автомобилей, другой продукции машиностроения.
  • Благодаря температуре плавления, износостойкости, малой истираемости используется как легирующая присадка.

Молибдену требуется пара процентов лигатур в составе, чтобы свойства сплава изменились.

Например, полпроцента титана плюс 0,08% циркония создают молибденовый сплав, не снижающий прочность до 1060°C.

Неординарные параметры по трению обусловили использование молибдена как долговечной смазки с высоким КПД.

Материал незаменим для ртутных реле, поскольку амальгама с данным металлом ртутью не формируется.

Вольфрам

Открыт в конце 18 века. Самый твердый и самый тугоплавкий (3422°C) металл.

Тугоплавкий прочный металл, светло-серого цвета – вольфрам

Вместе с медью и железом используется как основа (до 80%) сплавов с рением, торием, никелем. Такие добавки повышают плотность, порог стойкости к ржавлению, надежность.

Востребован как материал систем электроснабжения, приборов, боеприпасов, ядерных боеголовок ракет. Никелевые сплавы как материал клюшек ценят поклонники гольфа.

Вольфрам в слитках

Вольфрам, его сплавы востребованы там, где нужна повышенная плотность в условиях запредельных температур.

Тантал

Самый стойкий к кислотам, коррозии из сегмента тугоплавких металлов.

Тяжёлый твёрдый металл серого цвета – тантал

Поэтому используется в конденсаторах смартфонов, планшетов, других гаджетов.

Совместим с биологическими организмами (не меняется под воздействием природных кислот). Благодаря этому применяется медициной.

В природе ниобий и тантал соседи. Не случайно названы по именам отца и дочери – Тантала и Ниобы, персонажей древнегреческих мифов.

Ниобий

Металл с небанальными характеристиками:

  • Самый легкий (малой плотности) в сегменте.
  • Уникален благодаря свойству менять коэффициент твердости и упругости в зависимости от степени отжига.
  • Самый частый в сплавах-суперпроводниках.

Применяется как материал конденсаторов, газовых турбин ракет, самолетов. А также элемент ядерных реакторов и ламп электронных приборов.

Вместе с гафнием и титаном – материал двигателей космических аппаратов (например, американского Аполлона).

Рений

Самый редкий и дорогой из тугоплавких металлов:

  • В сплавах выступает легирующим, никогда – основным компонентом.
  • Как лигатура, повышает утилитарные кондиции сплава: прочность, ковкость (например, с медью и платиной).
  • Обнаружен последним в тугоплавком сегменте.

Оксид рения – самый неустойчивый, плотный поток кислорода способен сорвать оксидный слой.

Сплавы с рением служат катализаторами, начинкой электронного оборудования, гироскопов, реакторов атомных объектов.

Дополнительная группа

Данный сегмент тугоплавких металлов включает девять позиций. Их общий признак – порог плавления от 1850°C.

Сюда зачислены девять элементов из трех групп (четвертый – шестой периоды) таблицы Менделеева.

У каждого своя «изюминка»:

  • Осмий – самое плотное вещество планеты, самый тяжелый тугоплав.
  • Иридий встречается чаще в метеоритах, чем на Земле.
  • Метаморфозы теплоемкости гафния необъяснимы наукой до сих пор.
  • Рутений назван в честь России.
  • Из чистого ванадия вытачивают жетоны и медали для коллекционеров.
  • Титан – единственный тугоплавкий цветной металл. Материал зубных и костных протезов.
  • Без циркония невозможны салюты и фейерверки. Медицинский «дублер» титана.

Тонким слоем хрома и благородного родия покрывают поверхность изделий класса люкс, включая ювелирные. Процессы называются хромированием и родированием.

Самый тугоплавкий металл в мире — свойства, получение, применение

Определение «тугоплавкие металлы» не требует дополнительных пояснений в силу исчерпывающей информативности самого термина. Единственным нюансом остается пороговая температура плавления, после которой вещество можно считать тугоплавким.

Исторические сведения

Прежде чем изучать характеристики самых тугоплавких металлов в мире следует ознакомиться с их историей открытия. Металлообработка известна человеку несколько тысяч лет. Однако активное получение тугоплавких металлов началось только со второй половины 19 века.

Изначально они использовались только в электротехнике. С появлением новых технологий в строении самолётов, машин, поездов и ракет детали с высоким показателем плавления начали использоваться активнее. Пик популярности заготовок, выдерживающих температуры более 1000 градусов, пришёлся на середину 20 века.

Где применяется вольфрам?

Широко используют соединения вольфрама. Их применяют в машиностроительной и горнодобывающей промышленностях, для бурения скважин. Из данного металла благодаря его высокой прочности и твердости изготавливают детали двигателей летательных аппаратов, нити накаливания, артиллерийские снаряды, сверхскоростные роторы гироскопов, пули и т.д. Также вольфрам успешно применяется как электрод при аргонно-дуговой сварке. Не обходятся и такие отрасли промышленности без соединений вольфрама – текстильная, лакокрасочная.

Определение

Большинство определений термина тугоплавкие металлы определяют их как металлы имеющие высокие температуры плавления. По этому определению, необходимо, чтобы металлы имели температуру плавления выше 4,000 °F (2,200 °C). Это необходимо для их определения как тугоплавких металлов. Пять элементов — ниобий, молибден, тантал, вольфрам и рений входят в этот список как основные, в то время как более широкое определение этих металлов позволяет включить в этот список ещё и элементы имеющие температуру плавления 2123 K (1850 °C) — титан, ванадий, хром, цирконий, гафний, рутений и осмий. Трансурановые элементы (которые находятся за ураном, все изотопы которых нестабильны и на земле их найти очень трудно) никогда не будут относиться к тугоплавким металлам.

Сравнительная таблица степени тугоплавкости чистых металлов

Следует отметить, что тугоплавкие материалы не ограничиваются исключительно металлами. К этой категории относится ряд соединений – сплавы и легированные металлы, разработанных, чтобы улучшить определенные характеристики исходного материала. Относительно чистых элементов, можно привести наглядную таблицу степени их температурной устойчивости. Возглавляет ее самый тугоплавкий металл, известный на сегодня, – вольфрам с температурой плавления 3422 0С. Такая осторожная формулировка связана с попытками выделить металлы, обладающие порогом расплава, превосходящим вольфрам. Поэтому вопрос, какой металл самый тугоплавкий, может в будущем получить совсем иное определение.

Читайте также  Почему обручальные кольца носят на безымянном пальце

Пороговые величины остальных соединений приведены ниже:

  • рений 3186;
  • осмий 3027;
  • тантал 3014;
  • молибден 2623;
  • ниобий 2477;
  • иридий 2446;
  • рутений 2334;
  • гафний 2233;
  • родий 1964;
  • ванадий 1910;
  • хром 1907;
  • цирконий 1855;
  • титан 1668.

Остается добавить еще один интересный факт, касающийся физических свойств жапропрочных элементов. Температура плавления некоторых из них чувствительная к чистоте материала. Ярким примером этому выступает хром, температура плавления которого может варьироваться от 1513 до 1920 0С, в зависимости от химического состава примесей. Поэтому, данные интернет пространства часто разнятся точными цифрами, однако качественная составляющая от этого не страдает.

Хром в чистом виде

Свойства самых тугоплавких металлов

Так самый тугоплавкий металл в мире (вольфрам) обычно легируется рением, торием, никелем при участии меди и/или железа. Первый делает сплав более коррозионстойким, второй — более надежным, а третий — придает небывалую плотность. Следует обратить внимание, что во всех сплавах вольфрама содержится не более 4/5. Из-за того, что вольфрам одновременно и твердый, и тугоплавкий его обычно применяют в электроснабжении, строении приборов, изготовлении оружия, снарядов, боеголовок и ракет. Более плотные сплавы (на базе никеля) применяют для производства клюшек для игры в гольф. Вольфрам образует и так называемые псевдосплавы. Дело в том, что в них металл не легируется, а наполняется жидким серебром или медью. За счет разницы в температурах расплава получаются лучшие тепло и электропроводные свойства.

Молибден в отличие от вольфрама можно легировать лишь не некоторые сотые долей и получать при этом отличные свойства. Основными легирующими элементами молибдена являются: титан+цирконий и вольфрам. С последним сплав получается чрезвычайно инертным, с большим сопротивлением. Это дает возможность использовать его для изготовления форм для литья цинковых деталей. Особое направления использования молибдена — в качестве легирующего элемента в стальных сплавах. Сплавы сталь+молибден обладают хорошей износостойкостью и невысокими показателями трения. Сталь+молибден применяют в для изготовления труб, трубных конструкций, автомобиле и машиностроении.

Ниобий и тантал как братья, всегда находятся рядом. И тот и другой применяют в изготовлении электролитических конденсаторов .Ниобий иногда также легируют гафнием и титаном, чтобы он не вступал в реакцию с кислородов во время нагрева. Отжиг ниобия позволяет получать металл с разными коэффициентами упругости и твердости. Ниобий можно встретить в электроснабжении, ракето- и судостроении, ядерной промышленности и пр. Тантал же благодаря своей инертности к кислотам используется в медицине и производстве высокоточной электроники.

Самый редкий и самый дорогой металл из представленных — рений. Его сложно добывать, поэтому в сплавах он выступает не в качестве основного элемента, а в качестве легирующего. Нередким является его применение с медью и платиной. Рений упрочняет такие образования и улучшает их способность к ковке. Используется в ядерной, химической (катализатор) и электронной промышленностях.

Использование полезных свойств тугоплавких металлов и сплавов рассматривается учеными всего мира, как весьма перспективное направление научных изысканий.

Виды

Поскольку «чистый» вольфрам встретить в природе нельзя (он является составной частью горных пород), то необходима процедура по выделению данного металла. Причем ученые оценивают содержание его в коре Земли так – на 1000 кг породы всего 1,3 грамма вольфрама. Можно отметить, что самый тугоплавкий металл, является довольно редким элементом, если сравнить его с известными видами металлов.

Когда из недр Земли добывается руда, то количество вольфрама в ней составляет только лишь до двух процентов. По этой причине добываемое сырье идет на обогатительные заводы, где специальными способами массовую долю металла приводят к шестидесяти процентам. При получении «чистого» вольфрама процесс делится на несколько технологических этапов. Первый заключается в выделении чистого триоксида из добытого сырья. Для данной цели используется термическое разложение, когда самая высокая температура плавления металла составляет от 500 до 800 градусов. При данном температурном режиме лишние элементы поддаются плавлению, а из расплавленной массы собирается оксид вольфрама.

Далее получившееся соединение проходит этап тщательного измельчения, а затем осуществляется восстановительная реакция. Для этого добавляется водород и используется температура в 700 градусов. В результате получается чистый металл, который имеет порошкообразный вид. Затем идет процесс спрессовывания порошка, для чего применяют высокое давление, и спекания в среде из водорода, где температурный режим составляет 1200-1300 градусов.

Получившуюся массу отправляют в специальную печь для плавления, где масса нагревается электрическим током до отметки более 3000 градусов. То есть вольфрам получается жидким после плавления. Затем масса очищается от примесей и создается монокристаллическая ее решетка. Для этого используют способ зонной плавки – его суть состоит в том, что расплавленной на некотором промежутке времени является лишь часть металла. Этот метод позволяет осуществлять процесс перераспределения примесей, который скапливаются на одном участке, откуда их легко убрать из общей структуры сплава. Необходимый вольфрам имеет вид слитков, которые и применяются для производства необходимых видов продукции в разных отраслях деятельности.

Применение тугоплавких материалов

Применение чистых жаропрочных металлов имеет приоритеты по ряду направлений:

  • сверхзвуковая авиация;
  • производство космических кораблей;
  • изготовление управляемых снарядов, ракет;
  • электронная и вакуумная техника.

Последний пункт затрагивает электроды электровакуумных радиоламп. Например, высокочистый ниобий используется для производства сеток, трубок электронных деталей. Также из него изготавливаются электроды – аноды электровакуумных приборов.

Аналогичное применение свойственно молибдену, вольфраму. Эти металлы в чистом виде используются не только как нити накаливания, но и под электроды радиоламп, крючки, подвески электровакуумного оборудования. Монокристаллы вольфрама, напротив, эксплуатируются как подогреватели электродов, в частности катодов, а также при изготовлении электрических контактов, предохранителей.

Чистые ванадий и ниобий используются в ядерной энергетике, где их них изготовлены трубы атомных реакторов, оболочки тепловыделяющих элементов. Область применения высокочистого тантала – химия (посуда и аппаратура), поскольку металл обладает высокой стойкостью к коррозии.

Отдельно следует рассматривать тугоплавкий припой, поскольку он не включает металлов, имеющих высокие температуры плавления. Например, тугоплавкое олово не содержит порошки тугоплавких металлов. В качестве добавок тут используются медь, серебро, никель или магний.

Тугоплавкие металлы и сплавы востребованы как прокат, так и в других сферах. В частности, применение сплавов обусловлено способностью, модифицировать определенные свойства металла: понизить температуру охрупчивания, улучшить жаропорочные характеристики.

Прокат из тугоплавких металлов достаточно широк по ассортименту и включает:

  • листы;
  • полосы обычные и для глубокой вытяжки;
  • фольгу;
  • трубы;
  • проволоку и прутки.

Термоэлектродная проволока вольфрам-рениевая

Наиболее крупным отечественным производителем данного типа продукции выступает опытный завод тугоплавких металлов и твердых сплавов.

Видео — тугоплавкие металлы

Что такое тугоплавкие металлы — список, области применения и свойства

Название тугоплавких металлов напрямую говорит об их особенностях. Многие из них стали известны еще в конце 19 века, но не сразу нашли свое применение. Редкое исключение составили некоторые соединения, которые были востребованы в электротехнике. Ситуация резко изменилась в средине прошлого века по причине активного развития ракетостроения и сверхзвуковой авиации. Именно в этих отраслях промышленности наиболее востребованы тугоплавкие металлы, способные выдержать высокие нагрузки при температуре рабочей среды выше 1000 градусов по шкале Цельсия.

Характеристики и перечень тугоплавких металлов

Тугоплавкость определяется показателем температуры, до достижения которой металл не плавится. Для группы тугоплавких металлов температура плавления не может быть ниже 1875 градусов.

Список тугоплавких металлов включает:

  • ванадий;
  • хром;
  • родий;
  • гафний;
  • рутений;
  • вольфрам;
  • иридий;
  • тантал;
  • молибден;
  • осмий;
  • рений;
  • ниобий.

Иридий, рутений, родий и осмий встречаются очень редко, в год их производят не более 1,6 тонны. Потребностям современного производства в полной мере отвечает только добыча хрома, молибдена, ванадия и вольфрама.

Наряду с высокой температурой плавления необходимо отметить и характерные недостатки данных материалов. Жаропрочный металл не отличается высокой стойкостью к окислению. Этим объясняется необходимость нанесения защитных гальванических покрытий на изделия, предназначенные для использования в рабочей среде с температурой выше 1000 градусов. В плане стойкости к окислению выделяется хром, но он при этом обладает самой низкой температурой плавления.

Кроме того, хром, вольфрам и молибден отличаются повышенной хладноломкостью, что заметно усложняет их обработку методом давления.

Наиболее перспективны для промышленности молибден и ниобий. Они часто встречаются в естественных условиях, что существенно снижает конечную стоимость продукции. Молибден ценится как жаростойкий металл с высокой удельной прочностью. Ниобий обладает низкой степенью плотности, высокой тугоплавкостью и технологичностью.

Вольфрам представляет собой самый тугоплавкий металл и материал, востребованный в качестве легирующего компонента. В чистом виде он применяется редко из-за недостатков, перечисленных выше, и повышенной плотности.

Физические и механические свойства

Тугоплавкие металлы входят в группу переходных элементов. Таблица Менделеева различает две их разновидности:

  • ниобий, тантал, ванадий входят в подгруппу 5А;
  • хром, вольфрам и молибден – в подгруппу 6А.

Самая небольшая плотность у ванадия (6100 кг/м3), а максимальная у вольфрама (19300 кг/м3). Остальные металлы по показателю удельной плотности находятся в пределах этих рамок. Все они обладают низким коэффициентом линейного расширения, малой теплопроводностью и упругостью. Элементы плохо проводят электроток, но отличаются сверхпроводимостью. В зависимости от вида элемента температура сверхпроводимости колеблется в пределах от 0,05 до 9 К.

Примечательно, что при комнатной температуре тугоплавким металлам присуща высокая пластичность. Кроме того, молибдену и вольфраму свойственна повышенная жаропрочность на фоне остальных элементов. Не все элементы обладают высокой степенью жаростойкости. Большая часть тугоплавких металлов устойчивы к агрессивному воздействию щелочи или кислоты в обычной среде. Но при нагреве до 400 градусов их активность резко увеличивается. По этой причине материалы нуждаются в создании особых условий эксплуатации. В высокотемпературной рабочей среде их нередко помещают в особую атмосферу инертных газов или разреженный до состояния вакуума воздух.

Общим для всех элементов показателем является высокая степень химической активности. Именно эта особенность заметно усложняет получение чистых элементов, вызывая необходимость построения многоэтапной технологической цепочки.

Кроме того, определенные сложности с применением жаропрочных металлов в промышленном производстве объясняются их повышенной склонностью к хладноломкости. Иными словами, при снижении температуры рабочей среды до определенной отметки материал становится хрупким. Ванадий проходит эту отметку на -195 градусах, ниобий на -120, а вольфрам на +330 градусах по шкале Цельсия. Эта особенность объясняется присутствием некоторых примесей в составе металлов.

Читайте также  Как назвать сову

Производство тугоплавких металлов

По причине высокой химической активности основной технологией выработки жаропрочных металлов служит порошковая металлургия.

Существует несколько методов получения металлов данной категории в виде порошка.

  • Реакция восстановления с участием триоксида водорода включает в себя несколько этапов, и применяется для выработки молибдена и вольфрама. Процесс осуществляется в многотрубных печах при 750-950 градусах.
  • Схема восстановления при помощи водорода перрината предназначена для получения металлического рения. Средняя температура составляет 500 градусов, а на последнем этапе происходит отделение порошка от щелочи при помощи процедуры вымывания с последовательным использованием воды и раствора соляной кислоты.
  • Для получения молибдена применяют соли разных металлов. Чаще всего в качестве исходного сырья выступает аммонийная соль и металлический порошок металла, который добавляют в смесь в пропорции от 5 до 15% от общего объема. Технология предполагает обработку сырья при температуре от 500 до 800 градусов в потоке инертного газа. Реакция восстановления осуществляется в водородной среде с температурным режимом от 800 до 1000 градусов.

Полученный в виде порошка металл прессуют или запекают.

Сфера применения

Жаропрочные металлы в чистом виде востребованы в:

  • сверхзвуковой авиации;
  • ракетостроении и создании космических кораблей;
  • производстве ракет и снарядов с радиоуправлением;
  • вакуумной технике и электронике.

К примеру, ниобий без примесей необходим при изготовлении трубок, сеток, электронных деталей для электровакуумных радиоламп, а также электродов-анодов для электровакуумных устройств. Подобное назначение у молибдена и вольфрама. Их используют для электродов радиоламп, подвесок и крючков электровакуумных установок. Вольфрамовые монокристаллы необходимы для производства катодов, предохранителей, электрических контактов. Кроме того, металл с самой высокой температурой плавления давно востребован для нитей накаливания в привычных всем электрических лампах.

Ниобий и ванадий в чистом виде предназначены в первую очередь для атомной энергетики. Именно из них делают оболочки тепловыделяющих элементов и трубы ядерных реакторов. Чистый тантал необходим для химической отрасли в силу повышенной устойчивости к коррозии. Из него изготавливают технологические емкости, детали аппаратов и установок, различную посуду.

Тугоплавкие сплавы и металлы применяют в разных промышленных отраслях. Назначение соединений обусловлено их специфическими свойствами, в первую очередь жаропрочностью.

Производство проката включает:

  • трубы и листы;
  • проволоку и пруток;
  • фольгу и полосы (обычного типа или для глубокой вытяжки).

В отдельную позицию выделяют тугоплавкий припой. Это обусловлено отсутствием в его составе элементов с высокой температурой плавления. В роли компонентов применяют никель, медь, магний или серебро.

Самый тугоплавкий металл

С древних времен человек научился обрабатывать и использовать в своей жизни металлы. Какие-то из них подходят для изготовления посуды и других товаров народного потребления, из других, например нержавеющая сталь, делают оружие и медицинские инструменты. А некоторые металлы и сплавы используются для строительства сложных технических механизмов, например космический корабль или самолет. Одной из характеристик, на которую обращают внимание при выборе того или иного материала, является его тугоплавкость.

Тугоплавкость металлов

Внимание этой характеристике уделяют все инженеры и конструкторы, работающие в машиностроении. В зависимости от величины этой характеристики, человек может рассчитать и определить в какую конструкцию можно применить те или иные тугоплавкие материалы.

Материалы, температура плавления который выше температуры плавления железа, равной 1539 °С, называются тугоплавкими. Самые тугоплавкие материалы:

  • тантал;
  • ниобий;
  • молибден;
  • рений;
  • вольфрам.

Полный список содержит больше химических элементов, но не все из них получили распространенное применение в производстве и некоторые обладают меньшими температурами плавления или радиоактивны.

Вольфрам – самый тугоплавкий металл. На вид он светло-серого цвета, твердость и вес достаточно велики. Однако, он становится хрупким при низких температурах и его легко сломать (хладноломкость). Если нагреть вольфрам больше 400 °С, он станет пластичным. С другими веществами вольфрам плохо соединяется. Добывают его из сложных и редких минералов руд, таких как:

  • шеелит;
  • ферберит;
  • вольфрамит;
  • гюбнерит.

Переработка руды очень сложный и дорогостоящий процесс. Извлеченный материал формируют в бруски или готовые детали.

Вольфрам был открыт в XVIII веке, но долгое время не существовало печей, способных нагреваться до температуры плавления этого тугоплавкого металла. Ученые провели множество исследований и подтвердили, что вольфрам самый тугоплавкий металл. Стоит отметить, что по одной из теорий, сиборгий имеет большую температуру плавления, но не удается провести достаточное количество исследований, т.к. он радиоактивен и нестабилен.

Добавление вольфрама в сталь увеличивает ее твердость, поэтому его стали применять в изготовлении режущего инструмента, что увеличило скорость резания и тем самым привело к росту производства.

Высокая стоимость и трудность обработки этого тугоплавкого металла сказываются на сферах его применения. Он используется в тех случаях, когда нет возможности применить другой. Его достоинства:

  • устойчив к высоким температурам;
  • повышенная твердость;
  • прочный или упругий при определенных температурах;

Переработка металлической руды

Все эти характеристики помогают вольфраму найти широкое применение в различных сферах, таких как:

  • металлургия, для легированных сталей;
  • электротехника, для нитей накаливания, электродов и др.;
  • машиностроение, в изготовлении узлов зубчатых передач и валов, редукторов и многом другом;
  • авиационное производство, в изготовлении двигателей;
  • космическая отрасль, применяется в соплах ракет и реактивных двигателях;
  • военно-промышленный комплекс, для бронебойных снарядов и патронов, брони военной техники, в устройстве торпед и гранат;
  • химическая промышленность, вольфрам обладает хорошей коррозийной стойкостью к действию кислот, поэтому из него делают сетки для фильтров. Кроме того соединения с вольфрамом используют в качестве красителей тканей, в производстве одежды для пожарных и многом другом.

Такой перечень отраслей, где используется этот тугоплавкий металл говорит о том, что его значение для человечества очень велико. Ежегодно по всему миру изготавливают десятки тысяч тон чистого вольфрама и с каждым годом потребность в нем растет.

Получение тугоплавких материалов

Основная трудность, встречающаяся при получении тугоплавких металлов и сплавов, это их высокая химическая активность, которая мешает быть элементу в чистом виде.

Установка для получения тугоплавких металлов

Наиболее распространенной технологией получения считается порошковая металлургия. Существует несколько способов получить порошок тугоплавкого металла.

  1. Восстановление с помощью триоксида водорода. Такой метод включает в себя несколько этапов, оборудование для обработки — это многотрубные печи, с диапазоном температур от 750 до 950 °С. Данный способ применяется для получения молибдена и вольфрама.
  2. Восстановление водородом из перрената аммония. При температуре около 500 °С, на заключительном этапе, полученный порошок, отделяют от щелочей с помощью кислот и воды. Применяется для получения рения.
  3. Соли различных металлов также применяются для получения порошка молибдена. Например, используют соль аммония металла и его порошок не более 15% от общей массы. Смесь нагревается до 500-850 °С при помощи инертного газа, а затем технология производства предусматривает провести восстановление водородом при температуре 850 — 1000 °С.

Производство тугоплавких металлов

Полученный этими способами порошок в дальнейшем подвергают к спеканию в специальные формы, для дальнейшей транспортировки и хранения.

На сегодняшний день, эти способы получения чистых тугоплавких металлов продолжают дорабатываться и применяются новые техники извлечения материала из горных пород. С развитием ядерной энергетики, космической отрасли, металлургии, мы в скором времени сможем наблюдать появление новых методов, возможно более дешевых и простых.

Применение тугоплавких материалов

Сферы, в которых применяются тугоплавкие металлы и сплавы:

  • авиация;
  • ракетостроение;
  • электроника;
  • космический и военный комплекс.

Объединяет все эти сферы использование новейших технологий и процессов. В основном используются в электрических приборах, лампах, электродах, катодах, предохранителях и многом другом.

Нашли они свое применение и в ядерной энергетике. Тугоплавкие металлы применяют для производства труб ядерных реакторов, оболочек и других элементов АЭС.

В химической промышленности нашли свое применение вольфрам, для окраски тканей, и тантал, антикоррозионные свойства которого применяются при изготовлении посуды и аппаратуры.

Использование тугоплавких металлов в составе прокатных сталей усиливает определенные свойства тех. Это способствует увеличению прочности, температуре плавления и многим другим свойствам.

Ежегодно выпускается миллионы тонн тугоплавких металлов по всему миру. Они используются в составе различных сплавов и сталей. Без них невозможно изготовить качественный инструмент и материал. Развитие военно-промышленного комплекса, самолетостроения, кораблестроения, создание космических кораблей, безопасность в атомной промышленности невозможна без их применения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: