Как найти внешний угол треугольника

Геометрия

План урока:

Сумма углов треугольника

Рассмотрим произвольный треугольник АВС. Точки А, В и С не лежат на одной прямой, а потому через В можно провести прямую a, параллельную АС. При этом прямые СВ и АВ окажутся секущими для двух параллельных прямых:

Известно, что секущие образуют пары накрест лежащие углы, причем они равны. Отметим на рисунке эти пары и обозначим их как ∠1, ∠2, ∠3 и ∠ 4.

Равные углы (∠1 = ∠2, ∠3 = ∠4) отметим одним цветом. Также обозначим ∠АВС как ∠5:

С одной стороны, углы 2, 4 и 5 вместе образуют развернутый угол, то есть их сумма равна 180°:

В результате мы получили, что сумма углов треугольника АВС в точности равна 180°! В итоге мы можем сформулировать следующую теорему:

Задание. В треуг-ке один угол равен 50°, а второй – 60°. Чему равен третий угол этого треуг-ка?

Решение. Обозначим углы треугольника как ∠1, ∠2 и ∠3.

Получили обыкновенное уравнение с одной переменной. Для его решения просто перенесем слагаемые 50° и 60° из левой части в правую:

Задание. Докажите, что у любого треуг-ка есть хотя бы один угол, который не превосходит 60°.

Решение. Докажем это утверждение методом «от противного». Пусть существует такой треуг-к, у которого каждый из углов больше 60°. Это можно записать в виде трех неравенств:

В итоге имеем, что в сумме эти углы больше 180°, а это невозможно. Это противоречие, следовательно, треуг-к с тремя углами, каждый из которых больше 60°, не существует.

Задание. Основанием рав-бедр. ∆АВС является сторона АС. Известно, что ∠В = 40°. Чему равны ∠А и ∠С этого треуг-ка?

Решение. Сначала необходимо вспомнить важное свойство – углы равнобедренного треугольника при его основании равны друг другу. В нашем случае это значит, что ∠А = ∠С:

Задание. Один из углов при основании рав-бедр. треуг-ка равен 50°. Найдите два других угла.

Решение. Построим рисунок по условию задачи:

Отдельного внимания заслуживает равносторонний треуг-к. Напомним, что у него равны все три стороны. Построим его:

Теперь подумаем о том, чему равны его углы. С одной стороны, мы можем рассматривать ∆АВС как рав-бедр. с основанием АС, ведь AB = BC. Тогда∠А = ∠С. Но с другой стороны, всё тот же ∆АВС мы можем одновременно считать и рав-бедр. с основанием АВ, ведь АС = ВС. Из этого следует, что ∠А = ∠С. В итоге получаем, что все три угла ∆АВС равны:

Итак, получили удивительный факт – в равностороннем треуг-ке все углы равны 60°!

Рассмотрим чуть более сложную задачу, где неизвестен ни один из углов треуг-ка, однако известны некоторые соотношения между ними.

Задание. Первый угол треуг-ка больше второго в 2 раза, а третий равен сумме первых двух углов. Чему равны углы треуг-ка?

Решение. Для большей наглядности примем первый угол треуг-ка за неизвестную величину, то есть за х. Тогда второй угол будет равен , а третий окажется равным их сумме:

Внешние углы треугольника

Построим некоторый треуг-к, а потом продлим одну из его сторон. На рисунке мы продлили сторону АС. В результате образуется угол, который называют внешним углом треугольника:

На рисунке видно, что ∠ВСD является внешним. Но одновременно можно утверждать и ещё один факт – углы ∠АСВ и ∠ВСD являются смежными. Это позволяет нам дать следующее определение:

В итоге мы доказали, что внешний угол треугольника равен сумме двух углов треуг-ка, которые с ним не смежны.

Задание. У ∆АВС ∠А = 50°, ∠В = 75°. Найдите величину внешнего угла, смежного с ∠С.

Решение. В данном случае, согласно доказанному нами правилу, достаточно просто сложить ∠А и ∠B:

Рассмотрим ещё несколько более тяжелых задач.

Задание. В ∆АВС проведены биссектрисы угловА и B. Они пересекаются в точке М. Известно, что ∠А = 58°, B = 96°. Найдите ∠АМB.

Решение. Устно такую задачу не решить, поэтому построим рисунок:

АМ – это биссектриса, а она разбивает∠ВАС на два равных угла. Поэтому мы можем вычислить ∠ВАМ:

Отметим найденные углы на рисунке:

Обратите внимание на ∆АВМ, который выделен красным цветом. Теперь мы знаем два угла в нем. Значит, можно найти и третий! Запишем для ∆АВМ сумму его углов:

Задание. Построен внешний угол равнобедренного треугольника, который смежен с вершиной, лежащей против основания. Далее построили биссектрису этого внешнего угла. Докажите, что эта биссектриса будет параллельна основанию.

Решение. Выполним построение:

Пусть АС – это основание рав-бедр. ∆АВС. Тогда внешний угол должен быть проведен к вершине В, ведь именно она лежит против основания. Обозначим внешний угол как ∠СВD (для этого мы просто добавили точку Dна продолжение отрезка АВ). Далее проводим биссектрису ВК. Нам требуется доказать, что ВК||АС.

Поступим очень просто – обозначим неизвестную нам величину угла при основании как х. То есть

В результате мы получили, что и ∠С, и ∠CBK равны х, то есть они равны и друг другу. Однако эти углы являются накрест лежащими для прямых АС и ВК и секущей ВС. Из равенства накрест лежащих углов следует, что АС||ВК.

Задание. В ∆АВС проведена медиана АМ, причем ее длина равна ВМ. Найдите ∠А.

Решение. Напомним, что медиана – это прямая, разбивающая сторону на два равных отрезка. То есть ВМ = МС. По условию АМ = ВМ, значит, имеет место двойное равенство:

Посмотрите на рисунок – здесь есть сразу два рав-бедр. треуг-ка! Это ∆АВМ (с основанием АВ) и ∆АМС (с основанием АМС). Обозначим∠В как х, а ∠С – как у. Углы при основании рав-бедр. треуг-ков одинаковы, а потому

Сравнение сторон и углов треугольника

Докажем следующую теорему:

Построим ∆АВС, в котором сторона АВ будет длиннее, чем АС. Нам надо доказать, что ∠С >∠B:

Выполним дополнительное построение – отметим на прямой АВ такую точку D, что AD = АС. Точка D будет располагаться на отрезке АВ, ведь АВ больше АС, а, значит, и больше АD. Также соединим C и D отрезком:

Теперь рассмотрим ∆ADC. Он является рав-бедр., ведь AD = AC. Из этого следует, что ∠ADC = ∠ACD.

Можно заметить, что ∠АDС является внешним углом для ∆BDC. Это значит, что

Мы доказали только первую часть теоремы. Теперь надо доказать обратное утверждение – против большего угла находится большая сторона треугольника. Предположим обратное, что существует ∆АВС, в котором ∠С>∠B, но не выполняется условие АВ >AC. Тогда либо АВ = ВС, либо АВ AC.

Задание. В ∆АВС известны углы:

Запишите стороны этого треуг-ка в порядке возрастания.

Решение. Всё очень просто – чем больше сторона, тем против большего угла она лежит. Поэтому самая большая сторона – это АВ, вторая по длине – АС, а наименьшая сторона – ВС. То есть BС

Читайте также  Как написать сценарий для мультфильма

Доказанная теорема помогает сформулировать важный признак рав-бедр. треуг-ка:

Действительно, против равных углов должны лежать равные стороны, в противном случае сложится ситуация, когда в треуг-ке против сторон разной длины будут лежать равные углы, что невозможно.

Задание. В рав-бедр. ∆АВС основанием является АС. Из точек А и С проведены биссектрисы, которые пересеклись в точке О. Докажите, что ∆АОС также является рав-бедр.

Ясно, что ∠ВАС = ∠ВСА, так как это углы при основании рав-бедр. ∆АВС. С другой стороны, ∠ОАС равен половине ∠ВАС, ведь АО – биссектриса:

В итоге имеем, что ∠ОАС и ∠АСО равны. Но тогда в ∆АОС есть два одинаковых угла, а потому он является рав-бедр. (АО = ОС).

Неравенство треугольника

Следующая важная теорема называется неравенством треугольника:

Попробуем доказать неравенство треугольника. Возьмем произвольный ∆АВС и покажем, что сторона АВ меньше, чем величина ВС + АС. Для этого «дорисуем» к отрезку АС ещё один отрезок СD, равный BC, при этом АС и СD должны лежать на одной прямой:

Так как AD = АС + СD, то нам достаточно показать, что АВ

Получается, что в ∆АВD сторона АВ лежит против меньшего угла по сравнению со стороной АD. Значит, эта сторона должна быть меньше АD, что мы и пытаемся доказать.

Доказанная теорема означает, что не всякий треуг-к можно построить по его сторонам. Так, у нас никогда не получится построить треуг-к, у которого стороны равны 2, 3 и 7 см, так как одна из этих длин больше, чем сумма двух других:

Верно обратное утверждение – если все заданные длины удовлетворяют неравенству, то треуг-к построить можно.

Задание. Известны две стороны равнобедренного треугольника, они равны 25 и 10 см. Какая из них является основанием?

Решение. Рассмотрим сперва случай, когда основание равно 25 см. Тогда две другие стороны имеют длину 10 см. Их сумма (10 см + 10 см = 20 см) меньше основания. Такая ситуация невозможно из-за неравенства треуг-ка.

Ситуация же, при которой основание имеет длину 10 см, вполне допустима. Тогда две другие стороны равны 25 см, и для каждой стороны неравенство треуг-ка выполняется:

Внешний угол треугольника. Задание В7

Если в геометрической задаче присутствуют слова «внешний угол треугольника«, нам надо вспомнить несколько фактов:

1. Внешним углом треугольника называется угол, смежный с каким-либо углом треугольника:

2. Сумма смежных углов равна 180°

3. Внешний угол треугольника равен сумме двух углов, не смежных с ним:

Чтобы найти синус, косинус или тангенс внешнего угла треугольника, нужно найти эту функцию соответствующего внутреннего угла, а затем воспользоваться следующим формулами приведения:

(1)

(2)

(3)

Необходимо также вспомнить, как тригонометрические функции острого угла выражаются одна через другую:

Прежде чем приступать к разбору решений задач, рекомендую вам прочитать статью о соотношении сторон и углов в прямоугольном треугольнике.

Рассмотрим решение задач из Открытого банка заданий для подготовки к ЕГЭ по математике: .

1 . Задание B7 (№ 27382)

В треугольнике ABC угол C равен , , . Найдите тангенс внешнего угла при вершине A.

Найдем тангенс угла А, а затем воспользуемся формулой приведения.

АС=4, ВС найдем по теореме Пифагора:

Отсюда . Соответственно, по формуле приведения (3), тангенс внешнего угла при вершине А равен -0,25.

Ответ: -0,25

2 . Задание B7 (№ 27386)

В треугольнике ABC угол C равен , синус внешнего угла при вершине A равен 0,1. Найдите .

Воспользуемся формулой приведения (2): sinA=0,1

Ответ: 0,1.

3 . Задание B7 (№ 27387)

В треугольнике ABC угол C равен , синус внешнего угла при вершине A равен . Найдите .

Найдем сначала sin A. Он равен синусу внешнего угла треугольника при вершине А. То есть .

Найдем cosA c помощью основного тригонометрического тождества:

Ответ: 0,96

4. Задание B7 (№ 27389)

В треугольнике ABC угол C равен , синус внешнего угла при вершине A равен . Найдите .

Найдем сначала sin A. Он равен синусу внешнего угла треугольника при вершине А. То есть .

Сумма острых углов прямоугольного треугольника равна 90°, поэтому

Ответ: 0,96

5 . Задание B7 (№ 27392)

В треугольнике ABC угол C равен , косинус внешнего угла при вершине A равен . Найдите .

Если косинус внешнего угла при вершине A равен , то cos A=. Отсюда sinA=0,96

Ответ: 0,96

И.В. Фельдман, репетитор по математике.

Купить видеокурс «ВСЯ ГЕОМЕТРИЯ. Часть В»

Внешний угол треугольника: определение и свойство

Вы будете перенаправлены на Автор24

Основные определения

Прежде чем рассмотреть определение внешнего угла треугольника, напомним несколько основных определений из начального курса геометрии, а именно:

  • угла и треугольника;
  • смежных углов;
  • параллельных прямых.

Угол и треугольник являются геометрическими фигурами. Угол состоит из точки (вершины) и двух лучей (сторон угла), которые исходят из данной точки. Треугольник представляет собой три точки (вершины), соединённые отрезками (сторонами). Треугольник имеет три угла.

Смежными называют два угла, имеющие одну общую сторону, а другие две стороны являются продолжениями друг друга.

На рисунке ниже смежными углами являются углы $ADB$ и $BDC$. $angle ADB + angle BDC = angle ADC = 180^$.

Рисунок 1. Смежные углы. Автор24 — интернет-биржа студенческих работ

Параллельными называются две непересекающиеся прямые на одной плоскости. Секущей по отношению к двум прямым называется прямая, которая пересекает две прямые в двух точках. Если две прямые параллельны, то в случае пересечения пары этих прямых секущей, получившиеся в результате этого действа накрест лежащие углы равны, а сумма односторонних углов равна $180^$.

Теорема о сумме углов треугольника

Понятие внешнего угла треугольника встречается в теореме о сумме углов треугольника, которая звучит следующим образом:

Сумма углов треугольника равна $180^$.

Готовые работы на аналогичную тему

Приведём её доказательство.

Пусть дан произвольный $triangle ABC$. Нужно доказать, что $angle A + angle B + angle C=180^$.

Рисунок 2. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Проведём прямую $b$ через вершину $B$, которая будет параллельна стороне $AC$.

Рисунок 3. Теорема о сумме углов треугольника. Автор24 — интернет-биржа студенческих работ

Видим, что углы 1 и 5 — накрест лежащие углы при пересечении параллельных прямых $b$ и $AC$ секущей $AB$. Углы 3 и 4 также являются накрест лежащими углами при пересечении тех же параллельных прмяых секущей $BC$. Делаем вывод, что: $angle 5 = angle 1, angle 4 = angle 3$.

Очевидно, глядя на рисунок, что сумма углов 2, 4 и 5 равна $180^$. Отсюда следует, что $angle 1 +angle 2 +angle 3 = 180^$ или $angle A + angle B + angle C=180^$. Ч.т.д.

Внешний угол треугольника

В доказательстве теоремы о сумме углов треугольника есть два примера внешнего угла треугольника. Это углы 4 и 5. Дадим определение:

Внешний угол треугольника — это угол, являющийся смежным с каким-нибудь углом данного треугольника.

Внешний угол треугольника равен сумме двух углов данного треугольника, не являющихся смежным с внешним углом.

Докажем эту теорему.

Рассмотрим следующий рисунок:

Рисунок 4. Внешний угол треугольника. Автор24 — интернет-биржа студенческих работ

Мы видим, что угол 4 является внешним углом, смежным с 2 углом треугольника. Очевидно, что $angle 4 +angle 2 = 180^$. По теореме о сумме углов:

$(angle 1 +angle 3)+angle 2=180^$. Отсюда следует, $angle 4 = angle 1 +angle 3$. Ч.т.д.

Рассмотрим пример задачи на данную тему.

Задача. $triangle ABC$ — равнобедренный. $AC$ — основание этого треугольника. $AC$=37 см, внешний угол при $B$ равняется $60^$. Нужно найти расстояние от точки $C$ до прямой $AB$.

Решение. Сделаем рисунок:

Рисунок 5. Треугольник. Автор24 — интернет-биржа студенческих работ

На рисунке прямая, обозначающая расстояние от точки $C$ до прямой $AB$ обозначена как $CD$. В математике такое расстояние называют высотой. По определению высоты треугольника, прямая высоты перпендикулярна той стороне, на которую опущена. То есть $angle ADC = 90^$.

По теореме о внешнем угле треугольника находим $angle B$: $angle B=180-60=120^$. По теореме о сумме углов треугольника получается, что $angle A + angle C = 180-120=60$. Так как треугольник равнобедренный, углы у основания равны по $30^$.

Рассмотрим $triangle ADC$. Из вышеуказанного следует, что он прямоугольный. Из свойства прямоугольных треугольников известно, что катет такого треугольника, который лежит против угла $30^$, равен половине гипотенузы. В нашем случае, $СD$ является катетом против угла $30^$, а $AC$ — гипотенуза. Поэтому справедливо утверждать, что $CD=37/2=18,5$ см.

Таким образом, в данной статье мы получили полное представление о том, что такое внешний угол треугольника и разобрали сопутствующие теоремы.

Многоугольники

Определение многоугольника
Диагонали n – угольника
Внешний угол многоугольника
Свойства углов треугольника
Свойства углов многоугольника
Свойства углов правильного n – угольника
Доказательства теорем о свойствах углов многоугольника

Определение многоугольника

Рассмотрим n отрезков

[A1 A2], [A2 A3], … , [An An +1] (1)

причём таких, что два любых отрезка, имеющих общий конец, не лежат на одной прямой (рис.1).

Определение 1 . Ломаной линией с n звеньями называют фигуру L , составленную из отрезков (1), то есть фигуру, заданную равенством

В случае, когда точки A1 и An +1 совпадают, ломаную линию называют замкнутой ломаной линией (рис. 2), в противном случае её называют незамкнутой (рис.1).

Определение 2 . Многоугольником называют часть плоскости, ограниченную замкнутой ломаной линией без самопересечений (рис. 3). Отрезки, составляющие ломаную линию ( звенья ), называют сторонами многоугольника. Концы отрезков называют вершинами многоугольника.

Определение 3 . Многоугольник называют n – угольником , если он имеет n сторон.

Таким образом, многоугольник, имеющий 3 стороны, называют треугольником , многоугольник, имеющий 4 стороны, называют четырёхугольником и т.д.

Определение 4 . Периметром многоугольника называют сумму длин всех сторон многоугольника.

Величину, равную половине периметра, называют полупериметром .

Диагонали n — угольника

Число диагоналей n – угольника равно

Диагональ многоугольника

Число диагоналей n – угольника равно

Внешний угол многоугольника

Определение 5 . Два угла называют смежными , если они имеют общую сторону, и их сумма равна 180° (рис.1).

Определение 6 . Внешним углом многоугольника называют угол, смежный с внутренним углом многоугольника (рис.2).

Свойства углов треугольника

Сумма углов треугольника равна 180°

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним

Углы треугольника

Сумма углов треугольника равна 180°

Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним

Свойства углов многоугольника

Сумма углов многоугольника равна

Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°

Углы n – угольника

Сумма углов многоугольника равна

Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360°

Свойства углов правильного n – угольника

Все углы правильного n – угольника равны

Все внешние углы правильного
n – угольника
равны

Углы правильного n – угольника

Все углы правильного n – угольника равны

Все внешние углы правильного
n – угольника
равны

Доказательства свойств углов многоугольника

Теорема 1 . В любом треугольнике сумма углов равна 180° .

Доказательство . Проведем, например, через вершину B произвольного треугольника ABC прямую DE, параллельную прямой AC, и рассмотрим полученные углы с вершиной в точке B (рис. 3).

Углы ABD и BAC равны как внутренние накрест лежащие. По той же причине равны углы ACB и CBE . Поскольку углы ABD , ABC и CBE в сумме составляют развёрнутый угол, то и сумма углов треугольника ABC равна 180° . Теорема доказана.

Теорема 2 . Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.

Доказательство . Проведём через вершину C прямую CE, параллельную прямой AB, и продолжим отрезок AC за точку C (рис.4).

Углы ABC и BCE равны как внутренние накрест лежащие. Углы BAC и ECD равны как соответственные равны как соответственные . Поэтому внешний угол BCD равен сумме углов BAC и ABC . Теорема доказана.

Замечание . Теорема 1 является следствием теоремы 2.

Теорема 3 . Сумма углов n – угольника равна

Доказательство . Выберем внутри n – угольника произвольную точку O и соединим её со всеми вершинами n – угольника (рис. 5).

Получим n треугольников:

Сумма углов всех этих треугольников равна сумме всех внутренних углов n – угольника плюс сумма всех углов с вершиной в точке O . Поэтому сумма всех углов n – угольника равна

что и требовалось доказать.

Теорема 4 . Сумма внешних углов n – угольника, взятых по одному у каждой вершины, равна 360° .

Доказательство . Рассмотрим рисунок 6.

В соответствии рисунком 6 справедливы равенства

Внешний угол

Внешний угол.

Внешний угол треугольника (понятие и определение):

Внешний угол треугольника или многоугольника – это угол, смежный с каким-нибудь внутренним углом этого треугольника или многоугольника.

Внешним углом треугольника при данной вершине называется угол, смежный с внутренним углом треугольника при этой вершине.

В свою очередь смежные углы – это два угла, у которых одна сторона общая, а две другие являются дополнительными и лежат на одной прямой. Таким образом, вместе смежные углы составляют развёрнутый угол.

Если внутренний угол при данной вершине треугольника образован двумя сторонами, выходящими из данной вершины, то внешний угол треугольника образован одной стороной, выходящей из данной вершины и продолжением другой стороны, выходящей из той же вершины.

Рис.1. Внешний угол треугольника

Внешний угол равен разности между 180° и внутренним углом, он может принимать значения от 0 до 180° не включительно.

При каждой вершине треугольника имеются два внешних угла. Таким образом, у каждого треугольника существует 6 внешних углов.

Внешние углы каждой пары при данной вершине треугольника равны между собой, так как являются вертикальными .

Рис.2. Внешние углы треугольника

Теорема о внешнем угле треугольника:

Внешний угол треугольника равен сумме двух оставшихся внутренних углов треугольника, не смежных с этим внешним углом.

Рис.3. Внешний угол треугольника

Доказательство теоремы о внешнем угле треугольника следует из теоремы о сумме углов треугольника, равной 180°:

  • пусть ABC — произвольный треугольник с внешним углом d. Так как углы b и d – смежные, то их сумма равна 180°, то есть угол d = 180° – b;
  • по теореме о сумме углов треугольника, угол b = 180° – (a + c);
  • из этого следует, что углы a + c = 180 – b;
  • так как d также равен 180 – b, то угол d = a + c. Что и требовалось доказать.

Теорема о внешнем угле треугольника используется тогда, когда пытаются вычислить меры неизвестных углов в геометрии, в задачах с многоугольниками, где используются треугольники.

Теорема о внешнем угле треугольника применима только к плоским треугольникам и не применима ни в сферической геометрии, ни в связанной с ней эллиптической геометрии (геометрии Римана).

Работа с внешними углами многоугольника с помощью тригонометрии

Внешний угол многоугольника – угол, смежный с каким-нибудь внутренним углом многоугольника.

[large &sin alpha_>=sin alpha qquad qquad qquad cos alpha_>=-cos alpha\ &\ &mathrm, alpha_>=-, mathrm,alpha qquad qquad qquad , mathrm, alpha_>= -, mathrm,alpha end>]

Замечание: Синус и острого, и тупого угла – положительное число. Косинус, тангенс и котангенс острого угла – положительное число, а тупого угла – отрицательное число.
(острый угол: (0^circ , тупой угол: (90^circ )

Дан выпуклый четырехугольник (GEOM) , причем (angle G+angle E+angle O=330^circ) . Найдите синус внешнего угла при вершине (M) .

Т.к. сумма углов любого выпуклого четырехугольника равна (360^circ) , то (angle M=360^circ — 330^circ =30^circ) . Следовательно, (sin angle M=sin 30^circ =0,5) . Т.к. синусы смежных углов равны, то (sin M_>=0,5) .

Дан треугольник (ABC) , причем (sin (angle A+angle B)=0,67) . Найдите синус угла (ACB) .

Т.к. в треугольнике внешний угол при вершине (C) равен сумме углов (A) и (B) , то и (sin angle C_>=sin (angle A+angle B)=0,67) .
Т.к. синусы смежных углов равны, то (sin angle C=sin angle C_>=0,67) .

В треугольнике (ABC) : (angle B , (sin = 0,8) . Найдите косинус внешнего угла при вершине (B) .

Синусы смежных углов равны: (sin <(180^— alpha)> = sin) , тогда синус внешнего угла при вершине (B) равен (0,8) .

Используя основное тригонометрическое тождество ( (sin^2 + cos^2 = 1) ), находим, что косинус внешнего угла при вершине (B) равен (pm 0,6) .

Так как (angle ABC , то внешний угол при вершине (B) – тупой, следовательно, его косинус отрицателен. Косинус внешнего угла при вершине (B) равен (-0,6) .

В треугольнике (ABC) известно, что (cos (angle B+angle C)=0,33) . Найдите косинус угла (A) .

Т.к. в треугольнике внешний угол при вершине (A) равен сумме углов (B) и (C) , то (cos angle A_>=cos(angle B+angle C)=0,33) .
Т.к. косинусы смежных углов отличаются только знаком, то (cos angle A=-cos angle A_>=-0,33) .

Дан выпуклый пятиугольник, причем сумма четырех его внутренних углов равна (420^circ) . Найдите квадрат косинуса внешнего угла при вершине оставшегося пятого угла.

Т.к. сумма внутренних углов выпуклого (n) -угольника вычисляется по формуле (180^circ cdot (n-2)) , то сумма внутренних углов нашего пятиугольника равна (540^circ) . Следовательно, если (angle H+angle O+angle U+angle S=420^circ quad Rightarrow quad angle E=540^circ -420^circ =120^circ) .

Следовательно, (angle E_>=180^circ -angle E=60^circ) . Следовательно, (cosangle E_>=cos ^260^circ =dfrac14=0,25) .

В четырёхугольнике (ABCD) с тупыми углами (C) и (D) продолжение стороны (AD) за точку (D) и продолжение стороны (BC) за точку (C) пересеклись в точке (E) под прямым углом. При этом (sin = 0,6) . Найдите (sin) .

Из основного тригонометрического тождества с учётом того, что (angle DCE) – острый, получаем: (cos = 0,8) .

Из определений синуса и косинуса острого угла в прямоугольном треугольнике получаем, что (sin = cos = 0,8) .

Так как синусы смежных углов равны, то (sin = sin = 0,8) .

В невыпуклом четырёхугольнике (ABCD) ( (angle C > 180^circ) ) сторону (AD) продолжили за точки (A) и (D) , получив по одному внешнему углу при вершинах (A) и (D) . (angle BAD = 2cdot angle CDA) . Найдите косинус внешнего угла при вершине (A) , если косинус внешнего угла при вершине (D) получился (-0,9) .

Косинусы смежных углов противоположны: (cos <(180^— alpha)> = -cos) .

Косинус внешнего угла при вершине (D) равен ((-1)cdot cos) , откуда (cos = 0,9) .

(angle BAD = 2cdot angle CDA) , тогда (cos = 2cos^2 — 1 = 0,62) .

Так как косинус внешнего угла равен минус косинусу угла, смежного с ним, то косинус внешнего угла при вершине (A) равен (-0,62) .

Задания, в которых школьникам необходимо найти внешние углы многоугольника, в ЕГЭ по математике традиционно встречаются из года в год. Правильно решать подобные задачи должны уметь выпускники, сдающие как базовый, так и профильный уровень аттестационного испытания. Школьники, которые освоили задания из раздела «Работа с внешними углами многоугольника», смогут справиться с ЕГЭ и рассчитывать на получение достойных баллов по итогам его прохождения.

Как подготовиться к экзамену?

Перед решением задач на нахождение внешних углов многоугольника в ЕГЭ стоит освежить в памяти определения синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике. Кроме того, для некоторых заданий могут потребоваться формулы основных тригонометрических тождеств.

Восполнить пробелы в знаниях, например, по теме «Вычисление синуса угла треугольника» и лучше усвоить информацию вам поможет образовательный проект «Школково». Для того чтобы выпускники могли успешно справляться с задачами на нахождение внешних углов треугольника в ЕГЭ, мы предоставляем возможность повторить определения и основные правила. Весь необходимый базовый материал вы найдете в разделе «Теоретическая справка». Наши специалисты подобрали соответствующую информацию.

Для закрепления теоретического материала мы предлагаем выполнить упражнения по теме «Работа с внешними углами многоугольника». Подборка простых и сложных заданий представлена в блоке «Каталог». Наши специалисты регулярно обновляют и дополняют упражнения.

Попрактиковаться в решении задач на нахождение внешних углов многоугольника, подобных тем, которые встречаются в ЕГЭ, можно в режиме онлайн, находясь в Москве или любом другом городе России.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: