Как найти угловое ускорение

Формула для вычисления углового ускорения

  • Угловое ускорение – что это?
  • Угловая скорость
    • Основные формулы для вычисления угловой скорости
    • Связь между угловой скоростью и нормальным (центростремительным) ускорением
  • Основные формулы для расчета углового ускорения
    • Угловое ускорение маховика
  • Среднее угловое ускорение
  • Тангенциальное ускорение
  • Мгновенное угловое ускорение

Угловое ускорение – что это?

Угловое ускорение (varepsilon) – физическая величина, характеризующая изменение угловой скорости при движении тела.

Единица измерения: (lbrackvarepsilonrbrack=frac1<с^2>) или (с^<-2>)

Угловая скорость

Круговым движением точки вокруг оси называют движение, где траектория точки – окружность с центром, который лежит на оси вращения, перпендикулярной плоскости окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Угловая скорость (omega) – векторная физическая величина, характеризующая скорость изменения угла поворота при круговом движении точки или твердого тела.

При движении по окружности (круговом движении) скорость меняет свое направление, значит такое движение не может считаться равномерным, оно ускоренное или равноускоренное (в частных случаях).

Вектор угловой скорости направлен вдоль оси вращения.

Основные формулы для вычисления угловой скорости

Для равномерного вращения (когда за равные отрезки времени тело поворачивается на один и тот же угол):

  1. (omega=frac nt) , где (n) – количество оборотов за единицу времени (t) .
  2. (omega=fracvarphi t) , где (varphi) – угол поворота, (t) – время, за которое он совершен.
  3. (omega=frac<2pi>T) , где (Т) – период обращения (время, за которое тело/точка совершает один оборот).
  4. (omega=2pinu) , где (nu) – числом оборотов в единицу времени.

Единица измерения угловой скорости в СИ: (lbrackomegarbrack=frac<рад>с)

Связь между угловой скоростью и нормальным (центростремительным) ускорением

Центростремительное (нормальное) ускорение (a_n) – это составляющая полного ускорения, которая характеризует изменение направления вектора скорости при криволинейном движении. Другим компонентом полного ускорения является тангенциальное ускорение, оно характеризует изменение величины скорости.

Центростремительное ускорение определяется по формуле:

где (V) – скорость движения, (R) – радиус окружности.

Единица измерения в СИ: (lbrack a_nrbrack=frac м<с^2>)

Итак, формула связывающая эти две величины:

Основные формулы для расчета углового ускорения

Значение углового ускорения в определенный момент времени вычисляется как первая производная от угловой скорости или вторая производная от угла поворота по времени.

Угловое ускорение маховика

(varepsilon=fracomega t=frac<2pi n>t) , где (n) – количество оборотов за единицу времени (t) .

Среднее угловое ускорение

Средним угловым ускорением тела называют отношение изменения угловой скорости к отрезку времени, за который оно совершилось.

Тангенциальное ускорение

Тангенциальным (касательным) ускорением (a_tau) называют ту составляющую полного ускорения, которая направлена по касательной к траектории движения в данной точке. Тангенциальное ускорение описывает изменение скорости по модулю при криволинейном движении.

(a_tau=varepsilon r) , где (varepsilon) – угловое ускорение, (r) – радиус кривизны траектории в заданной точке.

Мгновенное угловое ускорение

Мгновенное угловое ускорение (alpha) есть первая производная угловой скорости по времени или вторая производная углового перемещения по времени.

Угловое ускорение

Система понятий кинематики включает в себя также такую величину как угловое ускорение тела. Дадим ей определение, рассмотрим основные аспекты с использованием примеров.

Основные понятия

Угловое ускорение – величина, характеризующая изменение скорости с течением времени.

Пусть рассматриваемый промежуток времени это: Δ t = t 1 — t , а изменение угловой скорости составит Δ ω = ω 1 — ω , тогда числовое значение среднего углового ускорения за тот же интервал времени: » open=» ε = ∆ ω ∆ t = ε . Перейдем к пределу, когда Δ t > 0 , тогда формула углового ускорения будет иметь вид: ε = l i m ∆ t → 0 ∆ ω ∆ t = d ω d t = d 2 φ d t = ω ˙ = φ ¨ .

Числовое значение ускорения в заданный момент времени есть первая производная от угловой скорости или вторая производная от угла поворота по времени.

Размерность углового ускорения 1 T 2 (т.е. 1 в р е м я 2 ). Укажем также, в чем измеряется угловое ускорение: за единицу измерения стандартно принимается р а д / с 2 или иначе: 1 с 2 ( с — 2 ) .

Ускоренное вращение тела – это вращение, при котором угловая скорость (ее модуль) возрастает с течением времени.

Замедленное вращение тела – это вращение, при котором угловая скорость (ее модуль) убывает с течением времени.

В общем, довольно просто заметить, что, если ω и ε имеют одинаковые знаки, наблюдается ускоренное вращение, а, когда противоположные знаки – замедленное.

Рисунок 1 . Вектор углового ускорения

Если мы представим угловое ускорение как вектор ε → = d ω → d t , имеющий направление вдоль оси вращения, то в случае ускоренного вращения ε → и ω → совпадут по направлениям (левая часть
рисунка 1 ) и будут противоположны по направлениям в случае замедленного вращения (правая часть
рисунка 1 ).

Закон равнопеременного вращения

Равнопеременное вращение – вращение, при котором угловое ускорение во все время движения является постоянным ( ε = c o n s t ) .

Выведем формульно закон равнопеременного вращения. Пусть в начальный момент времени t 0 угол вращения равен ϕ = ϕ 0 ; угловая скорость — ω = ω 0 (т.е. ω 0 является начальной угловой скоростью).

Выражение ε = d ω d t = ω ˙ = φ ¨ дает нам возможность сделать запись: d ω = ε d t . Проинтегрируем левую часть крайней записи в пределах от ω 0 до ω , а правую – в пределах от 0 до t , тогда:

ω = ω 0 + ε t , d φ = ω 0 d t + ε t d t .

Проинтегрируем вторично и получим формулу, выражающую закон равнопеременного вращения:

Закон равнопеременного вращения: φ = φ 0 + ω t + ε t 2 2 .

Вращение является равноускоренным, когда ω и ε имеют одинаковые знаки.

Вращение является равнозамедленным, когда ω и ε противоположны по знаку.

Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R , тогда: α r = ε R . Нормальное ускорение имеет также связь с угловым: a n = ω 2 R . Учтем это выражение и для полного ускорения получим: a = a r 2 + a n 2 = R ε 2 + ω 4 Для равнопеременного движения: ω = ε t ; a n = ω 2 R = ε 2 t 2 R и a = R ε 2 + ε 4 t 4 = R ε 1 + ε 2 t 4 .

Практические примеры

На рисунке 2 заданы различные типы вращения гироскопа (волчка). С учетом соответствующих подписей необходимо указать, какой рисунок верно демонстрирует направление углового ускорения.

Решение

Правило буравчика (правого винта) связывает направление вращения и псевдовектор угловой скорости. Рисунки 2 . 1 . и 2 . 3 . показывают направление псевдовектора вверх, а рисунки 2 . 2 . и 2 . 4 . – вниз.

Когда угловая скорость возрастает, ее приращение и вектор ускорения совпадут с вектором угловой скорости (рисунки 2 . 1 . и 2 . 4 . ). Когда угловая скорость будет уменьшаться, ее приращение и вектор ускорения окажутся противоположно направлены вектору угловой скорости (рисунки 2 . 2 . и 2 . 3 . ). Таким образом, все рисунки демонстрируют верное направление углового ускорения.

Пусть задана некоторая материальная точка, совершающая движение по окружности с радиусом R . При этом выражение ϕ = α t 3 отражает зависимость угла поворота от времени. Необходимо найти полное ускорение заданной точки как функцию времени.

Решение

Запишем выражения для угловой скорости и углового ускорения заданной точки:

ω = d φ d t = 3 α t 2 ; ε = 6 α t .

Полное ускорение запишем как:

a = a r 2 + a n 2 = R ε 2 + ω 4 = R 36 a 2 t 2 + 81 a 4 t 8 = 3 a t R 4 + 9 a 2 t 6 .

Угловое ускорение Как рассчитать и примеры

угловое ускорение это изменение, которое влияет на угловую скорость, принимая во внимание единицу времени. Он представлен греческой буквой альфа, α. Угловое ускорение является векторной величиной; следовательно, он состоит из модуля, направления и смысла.

Единицей измерения углового ускорения в Международной системе является радиан в секунду в квадрате. Таким образом, угловое ускорение позволяет определить, как угловая скорость изменяется во времени. Угловое ускорение, связанное с равномерно ускоренными круговыми движениями, часто изучается.

Таким образом, при равномерно ускоренном круговом движении значение углового ускорения является постоянным. Наоборот, при равномерном круговом движении значение углового ускорения равно нулю. Угловое ускорение эквивалентно в круговом движении тангенциальному или линейному ускорению при прямолинейном движении.

На самом деле его значение прямо пропорционально значению тангенциального ускорения. Таким образом, чем больше угловое ускорение колес велосипеда, тем больше испытываемое ускорение.

Следовательно, угловое ускорение присутствует как в колесах велосипеда, так и в колесах любого другого транспортного средства, при условии изменения скорости вращения колеса..

Аналогично, угловое ускорение также присутствует в колесе, поскольку оно испытывает равномерно ускоренное круговое движение, когда оно начинает свое движение. Конечно, угловое ускорение также можно найти в карусели.

  • 1 Как рассчитать угловое ускорение?
    • 1.1 Равномерно ускоренное круговое движение
    • 1.2 Крутящий момент и угловое ускорение
  • 2 примера
    • 2.1 Первый пример
    • 2.2 Второй пример
    • 2.3 Третий пример
  • 3 Ссылки

Как рассчитать угловое ускорение?

В общем, мгновенное угловое ускорение определяется из следующего выражения:

В этой формуле ω — угловая скорость вектора, а t — время.

Среднее угловое ускорение также можно рассчитать из следующего выражения:

В частном случае плоского движения бывает, что как угловая скорость, так и угловое ускорение являются векторами с направлением, перпендикулярным плоскости движения..

С другой стороны, модуль углового ускорения можно рассчитать по линейному ускорению с помощью следующего выражения:

В этой формуле а — тангенциальное или линейное ускорение; и R — радиус вращения кругового движения.

Круговое движение равномерно ускорено

Как уже упоминалось выше, угловое ускорение присутствует в равномерно ускоренном круговом движении. По этой причине интересно знать уравнения, которые управляют этим движением:

θ = θ + ω ∙ t + 0,5 ∙ α ∙ t 2

В этих выражениях θ — угол, пройденный в круговом движении, θ начальный угол, ω начальная угловая скорость, а ω угловая скорость.

Крутящий момент и угловое ускорение

В случае линейного движения, согласно второму закону Ньютона, для того, чтобы тело приобрело определенное ускорение, требуется сила. Эта сила является результатом умножения массы тела и ускорения, которое испытало то же самое.

Однако в случае кругового движения сила, необходимая для придания углового ускорения, называется крутящим моментом. Короче говоря, крутящий момент можно понимать как угловую силу. Обозначается греческой буквой τ (произносится «тау»).

Аналогичным образом, необходимо учитывать, что во вращательном движении момент инерции I тела выполняет роль массы в линейном движении. Таким образом, крутящий момент кругового движения рассчитывается по следующему выражению:

В этом выражении I — момент инерции тела относительно оси вращения.

примеров

Первый пример

Определить мгновенное угловое ускорение движущегося тела, совершающего вращательное движение, с учетом выражения его положения во вращении Θ (t) = 4 т. 3 я. (Где i — единичный вектор в направлении оси x).

Также определите значение мгновенного углового ускорения, когда прошло 10 секунд с начала движения..

решение

Выражение угловой скорости можно получить из выражения положения:

ω (t) = d Θ / dt = 12 т 2 я (рад / с)

Как только мгновенная угловая скорость была вычислена, мгновенное угловое ускорение может быть вычислено как функция времени.

α (t) = dω / dt = 24 t i (рад / с) 2 )

Чтобы вычислить значение мгновенного углового ускорения по истечении 10 секунд, необходимо только заменить значение времени в предыдущем результате..

α (10) = = 240 i (рад / с) 2 )

Второй пример

Определите среднее угловое ускорение тела, которое испытывает круговое движение, зная, что его начальная угловая скорость была 40 рад / с и что через 20 секунд она достигла угловой скорости 120 рад / с..

решение

Из следующего выражения вы можете рассчитать среднее угловое ускорение:

Третий пример

Каково будет угловое ускорение колеса, которое начинает двигаться с равномерно ускоренным круговым движением, пока через 10 секунд оно не достигнет угловой скорости в 3 оборота в минуту? Каким будет тангенциальное ускорение кругового движения в этот период времени? Радиус колеса составляет 20 метров.

решение

Во-первых, необходимо преобразовать угловую скорость из оборотов в минуту в радианы в секунду. Для этого выполняется следующее преобразование:

ωF = 3 об / мин = 3 ∙ (2 ∙ Π) / 60 = Π / 10 рад / с

Как только это преобразование выполнено, можно рассчитать угловое ускорение, учитывая, что:

Π / 10 = 0 + α ∙ 10

α = Π / 100 рад / с 2

А тангенциальное ускорение возникает в результате действия следующего выражения:

§ 1.28. Угловая скорость и угловое ускорение

Угловая скорость

Проведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором , проведенным из центра окружности к движущейся точке. Углы будем выражать в радианах(1).

При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ в начальный момент времени t и определить, на сколько изменился угол за время движения (рис. 1.87):

Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы. Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени. Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = , а другой точки — на угол 45 = , то мы говорим, что первая точка обращается быстрее второй в два раза.

Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью.

Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел.

Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)

В СИ(3) угловая скорость выражается в радианах в секунду (рад/с).

Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад.

Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с.

Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно .

Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением:

T = . (1.28.3)

Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),

Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с -1 , винта вертолета — 4—6 с -1 , ротора газовой турбины — 200—300 с -1 .

Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t — t0 = t. Тогда угол поворота равен

По этой формуле можно найти положение точки на окружности в любой момент времени.

Угловое ускорение

В случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:

Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω + β(t — t), где ω0 — угловая скорость в начальный момент времени t. При t = 0

Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота

Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х =

Связь между линейной и угловой скоростями

Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги (рис. 1.88): s = = ΔφR. Модуль линейной скорости движения

Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:

Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.

Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0.

Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а = = и v = ωR, то

Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с 2 .

Связь линейного ускорения с угловым

С изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:

Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению.

Упражнение 5

  1. Поезд движется по закруглению радиусом 200 м со скоростью 36 км/ч. Найдите модуль нормального ускорения.
  2. Тело брошено с поверхности Земли под углом 60° к горизонту. Модуль начальной скорости равен 20 м/с. Чему равен радиус кривизны траектории в точке максимального подъема?
  3. Определите радиус кривизны траектории снаряда в момент вылета из орудия, если модуль скорости снаряда равен 1 км/с, а скорость составляет угол 60° с горизонтом.
  4. Снаряд вылетает из орудия под углом 45° к горизонту. Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?
  5. Сферический резервуар, стоящий на земле, имеет радиус R. При какой наименьшей скорости камень, брошенный с поверхности Земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?
  6. Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол α с горизонтальной плоскостью. Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.
  7. Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м. Чему равно нормальное ускорение точки через 5 с после начала движения?
  1. Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит путь 600 м за 30 с. Радиус закругления равен 1 км. Определите модуль скорости и полное ускорение поезда в конце этого пути, считая тангенциальное ускорение постоянным по модулю.
  2. Груз Р начинает опускаться с постоянным ускорением а = 2 м/с 2 и приводит в движение ступенчатый шкив радиусами г = 0,25 м и R = 0,50 м (рис. 1.89). Какое ускорение а1, будет иметь точка М через t = 0,50 с после начала движения?

    Рис. 1.89

  3. Маховик приобрел начальную угловую скорость ω = 2π рад/с. Сделав 10 оборотов, он вследствие трения в подшипниках остановился. Найдите угловое ускорение маховика, считая его постоянным.
  4. Маховое колесо радиусом R = 1 м начинает движение из состояния покоя равноускоренно. Через t1 = 10 с точка, лежащая на его ободе, приобретает скорость v1 = 100 м/с. Найдите скорость, а также нормальное, касательное и полное ускорения этой точки в момент времени t2 = 15 с.
  5. Шкив радиусом R = 20 см начинает вращаться с угловым ускорением β = 3 рад/с2. Через какое время точка, лежащая на его ободе, будет иметь ускорение а = 75 см/с2?
  6. Точка начинает обращаться по окружности с постоянным ускорением β = 0,04 рад/с2. Через какое время вектор ее ускорения будет составлять с вектором скорости угол а = 45°?

(1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17’48». В радианной мере угол равен отношению длины дуги окружности к ее радиусу: .

(2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0:

(3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.

Угловое ускорение

Вы будете перенаправлены на Автор24

Угловое ускорение характеризует изменение угловой скорости с течением времени. Если за промежуток времени ∆t = t1 — t угловая скорость изменяется на величину ∆$omega $ = $omega $1 — $omega $, то числовое значение среднего углового ускорения за этот промежуток времени будет $leftlangle varepsilon rightrangle =frac=varepsilon $ . Перейдя к пределу при ∆t>0, получим: $varepsilon =_ frac=frac

=frac
=dot=ddot >$.

Таким образом, числовое значение углового ускорения в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота по времени.

Размерность углового ускорения $1/T^2$ ($1/время^2$); в качестве единицы измерения обычно применяется $рад/с^2$ или, что то же, $1/с^2$ $(с^<-2>)$.

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным, а если убывает, замедленным. Легко видеть, что вращение будет ускоренным, когда величины $omega $ и $varepsilon $ имеют одинаковые знаки, и замедленным — когда знаки разные.

Рисунок 1. Вектор углового ускорения

Угловое ускорение тела можно представить в виде вектора $overrightarrow=frac>

$ , направленного вдоль оси вращения. Направление $overrightarrow$ совпадает с направлением $overrightarrow$, когда тело вращается ускоренно (рис.1, а), и противоположно $overrightarrow $при замедленном вращении (рис.1, б).

Если угловое ускорение тела во все время движения остается постоянным ($$=const), то вращение называется равнопеременным. Найдем закон равнопеременного вращения, считая, что в начальный момент времени $t_0$ угол $$ = $$0, а угловая скорость $$ = $$0 ($$0 — начальная угловая скорость).

Из формулы $varepsilon =frac

=dot=ddot$ имеем d$omega $ = $varepsilon $dt. Интегрируя левую часть в пределах от $omega_0$ до $omega $, а правую — в пределах от 0 до t, найдем:

$omega $ = $omega_0$ + $varepsilon $t, d$varphi $ = $omega $0dt + $varepsilon tdt$.

Если величины $omega $ и $varepsilon $ имеют одинаковые знаки, то вращение будет равноускоренным, а если разные — равнозамедленным.

Угловое ускорение связано с полным и тангенциальным. Для точки, неравномерно вращающейся по окружности радиуса R, $a_=varepsilon R$. Учитывая, что нормальное ускорение связано с угловой скоростью $a_n=^2R$, для полного ускорения получаем: $a=sqrt+a^2_n>=Rsqrt<^2+^4>$. В случае равнопеременного движения $omega =varepsilon t$, $a_n=^2R=^2t^2R$, $a=Rsqrt<<^2+varepsilon >^4t^4>=Rvarepsilon sqrt<1+^2t^4>$

На рис.2 показаны направления вращения гироскопа (волчка) и указано, увеличивается или уменьшается угловая скорость. Укажите номер рисунка, на котором правильно указано направление углового ускорения.

Псевдовектор угловой скорости связан с направлением вращения правилом буравчика (правого винта). На рис. 2.1 и рис. 2.3 он направлен вверх, на рис. 2.2 и рис. 2.4 — вниз.

При возрастании угловой скорости ее приращение, а соответственно и вектор углового ускорения совпадают с вектором угловой скорости (рисунки 1 и 4). При уменьшении угловой скорости ее приращение, а соответственно, и вектор углового ускорения противоположны вектору угловой скорости (рис.2 и рис.3). Следовательно, на всех рисунках направление углового ускорения указано правильно.

Материальная точка движется по окружности радиуса R так, что зависимость угла поворота от времени задана уравнением $$=$$t3. Найти полное ускорение точки как функцию времени.

Найдём угловую скорость и угловое ускорение точки:

[omega =frac

=3alpha t^2;; varepsilon =6alpha t]

Магия тензорной алгебры: Часть 6 — Кинематика свободного твердого тела. Природа угловой скорости

Введение

Что такое угловая скорость? Скалярная или векторная величина? На самом деле это не праздный вопрос.

Читая лекции по теоретической механике в университете, я, следуя традиционной методике изложения курса кинематики, вводил понятие угловой скорости в теме «Скорость точки тела при вращательном движении». И там угловая скорость впервые появляется как скалярная величина, со следующим определением.

Угловая скорость твердого тела — это первая производная от угла поворота тела по времени

А вот потом, при рассмотрении каноничной формулы Эйлера для скорости точки тела при вращении

Угловая скорость тела — это псевдовектор, направленный вдоль оси вращения тела в ту сторону, откуда вращение выглядит происходящим против часовой стрелки

Ещё одно частное определение, которое, во-первых, утверждает неподвижность оси вращения, во-вторых навязывает рассмотрение лишь правой системы координат. И наконец термин «псевдовектор» обычно объясняется студентам так: «Посмотрите, ведь мы показали, что омега — скалярная величина. А вектор мы вводим для того, чтобы выписать формулу Эйлера».

При рассмотрении сферического движения оказывается потом, что ось вращения меняет направление, угловое ускорение направлено по касательной к годографу угловой скорости и так далее. Неясности и вводные допущения множатся.

Учитывая уровень подготовки школьников, а так же вопиющую глупость, допускаемую в программах подготовки бакалавров, когда теормех начинается с первого (вдумайтесь!) семестра, такие постепенные вводные, на палках, веревках и желудях наверное оправданы.

Но мы с вами заглянем, что называется, «под капот» проблемы и, вооружившись аппаратом тензорного исчисления, выясним, что угловая скорость — это псевдовектор, порождаемый антисимметричным тензором второго ранга.

Думаю для затравки вполне достаточно, а поэтому — начнем!

1. Свободное движение твердого тела. Тензор поворота

Если движение, совершаемо телом не ограничено связями, то такое его движение называют свободным

Это — самый общий случай движения тела. Следующий рисунок иллюстрирует тот факт, что свободное движение тела можно представить как сумму двух движений: поступательного вместе с полюсом и сферического вокруг полюса.

Рис. 1. Обычная иллюстрация из курса теоретической механики: определение положения свободного твердого тела в пространстве.

Напомню, что речь идет об абсолютно твердом теле, то есть теле, расстояния между точками которого не изменяется с течением времени. Ещё можно сказать, что твердое тело представляет собой неизменяемую механическую систему.

Как видно из рисунка 1, обычной практикой является рассмотрение двух систем координат — одна считается неподвижной и называется базовой, другая жестко связанна с телом и поворачивается относительно базовой вместе с ним. Такую систему координат называют связанной.

Сначала я тоже хотел ограничиться декартовыми координатами. Но тогда бы мои читатели задали бы мне логичный вопрос — «а зачем тогда тут тензоры?». Поэтому, потратив четыре для в мучительных раздумьях и «нагуляв» окончательное решение пару часов назад, я решил замахнуться на «Вильяма, нашего, Шекспира» и изложить дальнейшие рассуждения в криволинейных координатах.

Рис. 2. Ориентация твердого тела в локальном базисе.

Пусть положение полюса задается вектором

Причем под этим вектором не следует понимать радиус-вектор, так как в криволинейных координатах такое понятие бессмысленно.

В точке O1 задан локальный репер базовой системы координат, образованный тройкой векторов . С движущимся телом связан подвижный репер . Поворот связанного репера относительно базового можно задать линейным оператором. Получим этот оператор и исследуем его свойства

Рассмотрим некоторую точку M, принадлежащую телу. К ней из полюса можно провести вектор неподвижный относительно связанного репера. Его можно разложить по векторам этого репера

и по векторам базового репера

Каждый вектор связанного репера можно разложить через векторы базового репера

Подставляем (4) в (2) и сравниваем с (3)

Из (5) понятно, что компоненты вектора в базовой системе координат, пересчитываются через его компоненты в связанной системе путем применения линейного оператора

или в безиндексной форме

где столбцы матрицы

– контравариантные компоненты векторов связанного репера по отношению к базовому. Точка, как мы уже отмечали в прошлой статье, обозначает умножение тензоров с последующей сверткой по соседней паре индексов. Линейный оператор

действует на векторы таким образом, что поворачивает их относительно некоторой оси, не меняя длины и угла между векторами. Такое преобразование пространства называется ортогональным. Для того, чтобы таковое преобразование было возможным, оператор (7) должен обладать вполне определенными свойствами. Если длина векторов базиса и углы между ними не меняются, то это означает равенство всех попарных скалярных произведений векторов репера как в базовой, так и в связанной системах координат

Правая часть (8) — это локальный метрический тензор

Преобразование координат при повороте является тождественным для метрического тензора, то есть переводит метрический тензор сам в себя.

В выражении (10) нетрудно увидеть преобразование метрического тензора про смене системы координат, о котором мы подробно говорили в самой первой статье цикла

Стоп! Но мы же знаем, что матрицы поворота обычно ортогональны, то есть произведение матрицы поворота на её транспонированную дает единичную матрицу, иными словами, чтобы обратить матрицу поворота её достаточно транспонировать.

Но ортогональность свойственна матрицам поворота, преобразующим ортонормированный декартов базис. Здесь мы имеем дело с локальным базисом, при повороте которого должны сохранятся длины векторов и углы между ними. Если мы примем базис декартовым, то из (10) мы получим привычные свойства матрицы поворота, к примеру её ортогональность.

Для дальнейших вычислений нам потребуется знать, как будет выглядеть матрица обратного преобразования, то есть . Что же, посмотрим. Для этого умножим (10) слева на и справа на

откуда незамедлительно получаем

Выходит, что матрица обратного преобразования действительно получается из транспонированной матрицы преобразования, но с участием метрического тензора. Выражения (10) и (11) очень пригодятся нам, а пока сделаем некоторые выводы.

Закон свободного движения твердого тела можно выписать в криволинейных координатах в виде системы уравнений

При этом (12) — закон движения полюса, а (13) — закон сферического движения тела вокруг полюса. При этом (13) — тензор ранга (1,1), называемый тензором поворота.

2. Скорость точки тела при свободном движении. Угловая скорость выходит на сцену

Вычислим скорость точки M, положение которой в связанной системе координат задается постоянными, в силу твердости тела, криволинейными координатами

Из курса теоретической механики известна формула, определяющая скорость точки тела в данном движении

где — скорость полюса; — скорость точки вокруг полюса.

Так как все координаты, кроме (13) определены относительно базового репера, мы можем записать

Индекс в круглых скобках означает систему координат, в которой берутся компоненты (0 — базовая, 1 — связанная). Дифференцируем (15) по времени с учетом (13)

Перейдем в (16) к связанной системе координат, домножив (15) слева на

где — компонента оператора обратного преобразования .

Теперь сравним (17) и (14). В последнем слагаемом должно вылезти векторное произведение. Вспоминая определение векторного произведения через тензор Леви-Чивиты, данное во второй статье цикла, замечаем, что на выходе оно дает ковектор, поэтому в (17) перейдем к ковариантым компонентам, домножив это выражение на метрический тензор слева

Теперь представим себе, как выглядел бы ковектор скорости точки относительно плюса, записанный через вектор угловой скорости

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: