Как найти сторону трапеции, если известно основание

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Рис.1 Рис.2

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

m = a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a — h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a — c· cos α — d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с = h d = h
sin α sin β

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

m = a + b
2

2. Формула определения длины средней линии через площадь и высоту:

m = S
h

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

h = 2S
a + b

5. Формула высоты трапеции через площадь и длину средней линии:

h = S
m

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 — 2 ad· cos β

d 2 = √ a 2 + c 2 — 2 ac· cos β

d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab — d 2 2

d 2 = √ c 2 + d 2 + 2 ab — d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

S = ( a + b ) · h
2

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 — ( ( a — b ) 2 + c 2 — d 2 ) 2
2 2( a — b )

5. Формула Герона для трапеции

S = a + b √ ( p — a )( p — b )( p — a — c )( p — a — d )
| a — b |

где

p = a + b + c + d — полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p = a + c + d 1
2

a — большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r = h
2

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Формулы трапеции

Для расчёта всех основных параметров трапеции воспользуйтесь калькулятором.

Виды трапеции

  1. Произвольная трапеция – это четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна)
  2. Равнобедренная трапеция – это такая трапеция, у которой боковые стороны равны
  3. Прямоугольная трапеция – это такая трапеция, у которой есть прямые углы при боковой стороне

Свойства трапеции

  1. Средняя линия трапеции (FE) параллельна основаниям и равна их полусумме $$ FE = $$
  2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне
    Например: биссектриса AH отсекает на основании DC отрезок DH , который равен боковой стороне AD
  3. Треугольники AOB и DOC, образованные отрезками диагоналей и основаниями трапеции, подобны
  4. Треугольники AOD и BOC, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь
  5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон (AD + BC = AB + DC)
  6. Отрезок (KL), соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии, т.е. $$ KL = $$
  7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
  8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности

Свойства и признаки равнобедренной трапеции

  1. В равнобедренной трапеции углы при любом основании равны (∠ADC = ∠DCB и ∠DAB = ∠ABC)
  2. В равнобедренной трапеции длины диагоналей равны (AC = BD)
  3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная
  4. Около равнобедренной трапеции можно описать окружность
  5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований

Формулы площади произвольной трапеции

Площадь трапеции через основания и высоту

Площадь трапеции через среднюю линию и высоту

Площадь трапеции через диагонали и угол между ними

Площадь трапеции через четыре стороны

Формулы площади равнобедренной трапеции

Площадь трапеции через стороны

Площадь трапеции через стороны и угол

$$ S = AD * sin(∠ADC) * (DC — AD * cos(∠ADC)) $$ $$ S = AD * sin(∠ADC) * (AB + AD * cos(∠ADC)) $$

Площадь трапеции через диагонали и угол между ними

Площадь трапеции через среднюю линию, боковую сторону и угол при основании

$$ S = FE * AD * sin(∠ADC) = FE * AD * sin(∠DAB) $$

Площадь трапеции если в нее вписана окружность

Формулы сторон произвольной трапеции

Основание через другое основание и среднюю линию

$$ AB = 2 * FE — DC $$ $$ DC = 2 * FE — AB $$

Основание через другое основание, диагонали и угол между ними

$$ DC = AB + AG * (ctg(∠ADC) + ctg(∠BCD)) $$ $$ AB = DC — AG * (ctg(∠ADC) + ctg(∠BCD)) $$ $$ DC = AB + AD * cos(∠ADC) + BC * cos(∠BCD) $$ $$ AB = DC — AD * cos(∠ADC) — BC * cos(∠BCD) $$ $$ AD = $$ $$ BC = $$

Формулы сторон равнобедренной трапеции

$$ AD = $$ $$ AD = $$ $$ DC = AB + 2 * AG * ctg(∠ADC) $$ $$ AB = DC — 2 * AG * ctg(∠ADC) $$ $$ DC = AB + 2 * AB * cos(∠ADC) $$ $$ AB = DC — 2 * AB * cos(∠ADC) $$

Длина основания через диагональ, боковую сторону и другое основание

Длина боковой стороны через диагональ и основания

Длина основания через высоту, другое основание, диагонали и угол между ними

Длина основания через высоту, другое основание и площадь трапеции

Длина боковой стороны через площадь трапеции, среднюю линию и угол при основании

Длина боковой стороны через площадь трапеции, основания и угол при основании

Формулы сторон прямоугольной трапеции

$$ DC = AB + BC * cos(∠BCD) = AB + AD * ctg(∠BCD) $$ $$ AB = DC — BC * cos(∠BCD) = DC — AD * ctg(∠BCD) $$ $$ DC = AB + sqrt $$ $$ AB = DC — sqrt $$

Длина основания через боковую сторону, другое основание, диагонали и угол между ними

Длина основания через площадь трапеции, другое основание и высоту

Высота в прямоугольной трапеции равна стороне, которая перпендикулярна основаниям (AD = AG) $$ DC = <2 * S over AD>— AB $$ $$ AB = <2 * S over AD>— DC $$

Формулы диагоналей произвольной трапеции

Длина диагоналей через четыре стороны

Длина диагоналей по теореме косинусов

Длина диагоналей через высоту

Длина диагоналей через стороны и другую диагональ

Длина диагоналей через высоту, основания, другую диагональ и угол между диагоналей

Длина диагоналей через площадь трапеции, другую диагональ и угол между диагоналей

Длина диагоналей через среднюю линию, высоту, другую диагональ и угол между диагоналей

Формулы диагоналей равнобедренной трапеции

Длина диагоналей через стороны

Длина диагоналей по теореме косинусов

Длина диагоналей через высоту основание и угол при основании

Длина диагоналей через сторону и высоту

Формулы диагоналей прямоугольной трапеции

Формулы средней линии произвольной трапеции

Длина средней линии через основания

Длина средней линии через основание, высоту и углы при нижнем основании

Длина средней линии через диагонали, высоту и угол между диагоналями

Длина средней линии через площадь и высоту

Формулы средней линии равнобедренной трапеции

Длина средней линии через основания

Длина средней линии через основание, высоту и углы при нижнем основании

$$ FE = DC — AG * ctg(∠ADC) = AB + AG * ctg(∠ADC) $$

Длина средней линии через основания, боковую сторону и высоту

Длина средней линии через диагонали, высоту и угол между диагоналями

Длина средней линии через площадь и боковую сторону

Формулы средней линии прямоугольной трапеции

Длина средней линии через основания, высоту и угол при нижнем основании

Длина средней линии через основания, боковую сторону и угол при нижнем основании

Длина средней линии через основания и боковые стороны

Длина средней линии через диагонали, высоту и угол между диагоналями

Формулы высоты произвольной трапеции

Длина высоты через четыре стороны

Длина высоты через боковую сторону и прилегающий угол к основанию

$$ AG = AD * sin(∠ADC) = BC * sin(∠BCD) $$

Длина высоты через диагонали и углы между ними

Длина высоты через среднюю линию, диагонали и углы между ними

Длина высоты через площадь и основания

Длина высоты через площадь и среднюю линию

Формулы высоты равнобедренной трапеции

Длина высоты через по сторонам

Длина высоты через боковую сторону и прилегающий угол к основанию

Длина высоты через основания и прилегающий угол к основанию

Длина высоты через диагонали и углы между ними

Длина высоты через площадь и основания

Длина высоты через площадь и среднюю линию

Формулы боковых сторон прямоугольной трапеции

Сторона AD в прямоугольной трапеции равна высоте, поэтому все формулы высоты произвольной трапеции актуальны для стороны AD прямоугольной трапеции.

Сторона BC по трём сторонам

Сторона BC через основания и угол ∠BCD

Сторона BC через Сторону AD

Сторона BC через площадь, среднюю линию и угол ∠BCD

Сторона BC через площадь, основания и угол ∠BCD

Как найти сторону трапеции, если известно основание

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<1>^<○>$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

$$ 4.<9>^<○>$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.<9>^<○>$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

`d^2=c^2+ab`.

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.<2>^<○>$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.<1>^<○>$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.<11>^<○>$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.<6>^<○>$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.<13>^<○>$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.<14>^<○>$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Равнобедренная трапеция — свойства, признаки и формулы

Равнобедренная трапеция, её ещё называют равнобокой, имеет равные боковые стороны. Кроме этого, у нее в арсенале есть еще множество интересных и полезных свойств, которые можно с легкостью применять на практике или при решении математических задач.

Определение, признаки и элементы трапеции

Трапецией в геометрии принято называть любой четырехугольник, у которого есть две параллельные друг другу стороны, при том что продолжения других двух сторон пересекаются.

Определение же равнобедренной трапеции идет от того, что у нее боковые стороны эквиваленты по длине.

Свойства равнобедренной трапеции

Существует всего несколько основных свойств, присущих именно данной фигуре. Сейчас мы рассмотрим каждое из них:

  • Прямая, которая проходит через середину оснований такой трапеции, является ее осью симметрии, а также она перпендикулярна ее основаниям.
  • Углы при основаниях трапеции равны.
  • У равнобедренной трапеции также равны и длины диагоналей. Если диагонали перпендикулярны, тогда высота трапеции будет равна сумме основания, деленной на 2.
  • Диагональ разбивает фигуру на 2 треугольника.
  • Биссектрисы углов, принадлежащих одной и той же боковой стороне, всегда перпендикулярны друг другу.
  • Если мы опустим высоту на большее из оснований трапеции, то получим в итоге 2 отрезка АЕ и ЕВ:

    Первый отрезок АЕ будет равен сумме оснований, деленной на 2, а второй отрезок ЕВ — разности, разделенной на 2:

    Периметр равнобедренной трапеции

    Эту величину найти очень просто. Простейшей формулой будет сложение всех ее сторон. Однако иногда составители задач не дают нам информацию обо всех из сторон.

    В таком случае нам следует в первую очередь найти все стороны фигуры, а затем уже приступать к их сложению.

    Как найти стороны трапеции?

    Существует множество различных способов решения данной задачи, однако мы предложим только некоторые из них.

    В первую очередь можно найти стороны с помощью средней линии:

    Есть альтернатива, если вам известны высота и угол при большем основании:

    Средняя линия

    Средней линией в трапеции называется параллельный основаниям отрезок, который делит боковые стороны фигуры на равные части.

    У нее есть множество интересных свойств и теорем с нетрудным доказательством, таких как, например, решение задач на подобие, однако мы на них останавливаться не будем.

    Высота трапеции

    Высотой трапеции называется самый короткий по длине отрезок, который продолжается ровно от одного основания до другого. Он выполняет своеобразную вспомогательную роль в задачах вплоть до 10 класса с неизвестными сторонами и в тех задачах, где нужно дополнить фигуру до прямоугольника, например.

    Для нахождения длины этого отрезка нам необходимо знать оба основания (a и b), а также боковую сторону c. Также полезно было бы знать угол при большем основании α. Формулы здесь довольно простые и не нуждаются в доказательстве.

    Диагональ трапеции

    Эта линия просто идет от одного угла трапеции к другому, причем эти углы противоположны. В равнобедренной трапеции довольно приятным фактом является то, что диагонали в ней равны друг другу.

    А каким образом можно найти длину диагонали? Есть один очень простой способ. Мы можем сделать это, зная все три величины: боковую сторону и каждое из оснований:

    Площадь равнобедренной трапеции

    Самой простой формулой является полусумма оснований, умноженная на высоту. Она подходит к любым трапециям.

    Для второй формулы нужно знать все стороны трапеции. Это по сути усложненная версия первой, но подойдет она в том случае, если вы не знаете высоту.

    Это самые базовые формулы, поэтому очень часто используются в различных задачах.

    Вписанная и описанные окружности

    Интересно, что вписать в трапецию окружность можно только при определенном условии. И это условие выполняется, если мы попарно сложим противоположные стороны нашего четырехугольника, и эти суммы окажутся равны.

    Найти радиус этой окружности не составит труда. Нужно просто разделить высоту пополам.

    А вот с описанной окружностью все не так гладко. Есть различные полезные формулы. Например, если диагональ составляет с основанием прямой угол, то диаметр описанной окружности будет равен противоположному основанию трапеции.

    Теперь разберемся с формулой нахождения радиуса. К слову, она здесь не очень простая. Сначала найдем p — полупериметр ∆DBC, а затем просто применим его в следующей формуле:

    Математика бесспорно является матерью всех современных наук. Она по праву занимает свой престол и управляет абсолютно всеми мировыми законами.

    Одной из наиболее интересных подразделений математики принято считать именно геометрию. Ее фигуры также подчиняются математическим правилам и формулам, поэтому она необходима при различных сложных расчетах.

    Трапеция. Свойства трапеции

    Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

    Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
    Если боковые стороны равны, трапеция называется равнобедренной .

    Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

    Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

    Свойства трапеции

    1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

    2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

    3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

    Коэффициент подобия –

    Отношение площадей этих треугольников есть .

    4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

    5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

    6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

    7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

    8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

    Свойства и признаки равнобедренной трапеции

    1. В равнобедренной трапеции углы при любом основании равны.

    2. В равнобедренной трапеции длины диагоналей равны.

    3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

    4. Около равнобедренной трапеции можно описать окружность.

    5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

    Вписанная окружность

    Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

    Площадь

    или где – средняя линия

    Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

    Чтобы не потерять страничку, вы можете сохранить ее у себя:

    Как найти боковую сторону трапеции если известны основания?

    Рассмотрим на примере прямоугольной трапеции, в которой боковая сторона с по длине равняется высоте h.

    В этой трапеции можно найти боковую сторону с следующими способами:

    Если известная боковая сторона d, то боковая сторона с находится по формуле

    с=sqrt(sqr(d) — (sqr(a) — sqr(b));

    Если известен угол альфа (угол между отрезками d и a), то с находится по формуле

    По вашим данным двум основаниям однозначно найти боковую сторону даже равнобедренной трапеции невозможно.Потому что нужно ещё данное , хотя бы высота трапеции , или углы при основании.

    Пусть трапеция равнобедренная , основание большее равно а , основание меньшее равно b , высота равна h.

    Тогда боковые стороны которые равны между собой c = d :

    Для не равнобедренной трапеции формулы более конкретные , но нужны дополнительные данные , или углы при основании , или отрезки проекции высот , проведённых из вершин верхнего основания , на нижнее основание.

    Однозначно , нужны полные данные .

    Длина боковой стороны трапеции при постоянных размерах оснований будет зависить от угла между искомой боковой стороны и любым из оснований.

    Площадь трапеции равна произведению полусуммы её оснований на высоту. Или же произведению средней линии трапеции на высоту трапеции. Можно через стороны найти площадь, но формулу сразу не вспомню.

    Сколько десятилетий прошло, а помню. И теорему о средней линии трапеции хоть сейчас докажу ))

    Чтобы доказать, что отрезок, соединяющий середины боковых сторон Е и Г трапеции АВСД, параллелен основаниям трапеции проведём через эти середины перпендикуляры, которые пересекут большее основание (нижнее левое) соответственно в точках К и Л, а меньшее (верхнее правое) в точках М и Н. С левой стороны получим два равных прямоугольных треугольника ЕКА и ЕМВ как имеющие равные стороны АЕ и ВЕ и равные углы, следовательно отрезки ЕК и ЕМ равны. Аналогично с правой стороны ГЛ=ГН. КМНЛ является прямоугольником в котором стороны МК и НЛ разделены пополам в точках Е и Г следовательно КЕ=ЛГ и ЕГ параллельна основаниям АД и ВС.

    Проведём высоту СН из вершины прямого угла к нижнему основанию.

    По Пифагору получаем:

    Из подобия треугольников sqr(1-a^2)*sqr(1-2a)=a^2

    Возведём последнее выражение в квадрат (1-a^2)*(1-2a)=a^4.

    Получаем уравнение четвёртой степени относительно а : a^4-2a^3+a^2+2a-1=0

    К сожалению, не нашёл способ выразить величину а в радикалах. Но Excel позволяет легко и быстро решить уравнение методом подбора.

    Уравнение имеет два корня: а=-0,883 и а=0,469. Естественно, нас устраивает только положительный.

    Выразим площадь треугольника АСD двумя способами и приравняем их:

    Из пропорции получаем: 1/х=у/1, у=1/х=0,883.

    Итак, х=1,132, у=0,883, а=0,469.

    Равнобедренная прямоугольная трапеция — это трапеция, у которой боковые стороны равны, а один из углов равен 90°.

    Так как боковые стороны равны, а угол равен 90°, то получается, что такая трапеция — обыкновенный прямоугольник. Хотя на самом деле такой трапеции не существует, потому что трапеция — это выпуклый четырехугольник, у которого две противоположные стороны параллельны, а другие две не параллельны. В прямоугольнике обе пары противоположных сторон параллельны.

    Итак, такой фигуры не существует.

  • Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: