Как найти расстояние между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми: определение и примеры нахождения

Статья нацелена на нахождение расстояния между скрещивающимися прямыми методом координат. Будет рассмотрено определение расстояния между этими прямыми, получим алгоритм при помощи которого преобразуем нахождение расстояния между скрещивающимися прямыми. Закрепим тему решением подобных примеров.

Расстояние между скрещивающимися прямыми – определение

Предварительно необходимо доказать теорему, которая определяет связь между заданными скрещивающимися прямыми.

Раздел взаимного расположения прямых в пространстве говорит о том, что если две прямые называют скрещивающимися, если их расположение не в одной плоскости.

Через каждую пару скрещивающихся прямых может проходить плоскость, параллельная данной, причем только одна.

По условию нам даны скрещивающиеся прямые a и b . Необходимо доказать проходимость единственной плоскости через прямую b , параллельную данной прямой a . Аналогичное доказательство необходимо применять для прямой a , через которую проходит плоскость, параллельная данной прямой b .

Для начала необходимо отметить точку Q на прямой b . Если следовать из определения параллельности прямых, то получаем, что через точку пространства можно провести прямую, параллельную заданной прямой, причем только одну. Значит, через точку Q проходит только одна прямая, параллельная прямой a . Примем обозначение а а 1 .

Раздел способов задания плоскости было говорено о том, что прохождение единственной плоскости возможно через две пересекающиеся прямые. Значит, получаем, что прямые b и а 1 – пересекающиеся прямые, через которые проходит плоскость, обозначаемая χ .

Исходя из признака параллельности прямой с плоскостью, можно сделать вывод, что заданная прямая a параллельна относительно плоскости χ , потому как прямая a параллельна прямой а 1 , расположенной в плоскости χ .

Плоскость χ является единственной, так как прямая, проходящая через заданную прямую, находящуюся в пространстве, параллельна заданной прямой. Рассмотрим на рисунке, предоставленном ниже.

При переходе от определения расстояния между скрещивающимися прямыми определяем расстояние через расстояние между прямой и параллельной ей плоскостью.

Расстоянием между скрещивающимися прямыми называют расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.

То есть расстояние между прямой и плоскостью является расстоянием от заданной точки к плоскости. Тогда применима формулировка определения расстояния между скрещивающимися прямыми.

Расстоянием между скрещивающимися прямыми называют расстояние от некоторой точки скрещивающихся прямых к плоскости, проходящей через другую прямую, параллельную первой прямой.

Произведем подробное рассмотрение прямых a и b . Точка М 1 располагается на прямой a , через прямую b проводится плоскость χ , параллельная прямой a . Из точки М 1 проводим перпендикуляр М 1 Н 1 к плоскости χ . Длина этого перпендикуляра является расстоянием между скрещивающимися прямыми a и b . Рассмотрим на рисунке, приведенном ниже.

Нахождение расстояния между скрещивающимися прямыми – теория, примеры, решения

Расстояния между скрещивающимися прямыми находятся при построении отрезка. Искомое расстояние равняется длине этого отрезка. По условию задачи его длина находится по теореме Пифагора, по признакам равенства или подобия треугольников или другим.

Когда имеем трехмерное пространство с системой координат О х у z с заданными в ней прямыми a и b , то вычисления следует проводить, начиная с расстояния между заданными скрещивающимися при помощи метода координат. Произведем подробное рассмотрение.

Пусть по условию χ является плоскостью, проходящей через прямую b , которая параллельна прямой a . Искомое расстояние между скрещивающимися прямыми a и b равняется расстоянию от точки М 1 , расположенной на прямой a , к плоскости _ χ . Для того, чтобы получить нормальное уравнение плоскости χ , необходимо определить координаты точки M 1 ( x 1 , y 1 , z 1 ) , расположенной на прямой a . Тогда получим cos α · x + cos β · y + cos γ · z — p = 0 , которое необходимо для определения расстояния M 1 H 1 от точки M 1 x 1 , y 1 , z 1 к плоскости χ . Вычисления производятся по формуле M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 — p . Необходимое расстояние равняется искомому расстоянию между скрещивающимися прямыми.

Данная задача предполагает получение координат точки М 1 , которая располагается на прямой a , нахождение нормального уравнения плоскости χ .

Определение координат точки М 1 необходимо и возможно при знании основных видов уравнений прямой в пространстве. Чтобы получить уравнение плоскости χ , необходимо остановиться подробней на алгоритме вычисления.

Если координаты x 2 , y 2 , z 2 будут определены при помощи точки М 2 , через которую проведена плоскость χ , получаем нормальный вектор плоскости χ в виде вектора n → = ( A , B , C ) . Следуя из этого, можно записать общее уравнение плоскости χ в виде A · x — x 2 + B · ( y — y 2 ) + C · ( z — z 2 ) = 0 .

Вместо точки М 2 может быть взята любая другая точка, принадлежащая прямой b , потому как плоскость χ проходит через нее. Значит, координаты точки М 2 найдены. Необходимо перейти к нахождению нормального вектора плоскости χ .

Имеем, что плоскость χ проходит через прямую b , причем параллельна прямой a . Значит, нормальный вектор плоскости χ перпендикулярен направляющему вектору прямой a , обозначим a → , и направляющему вектору прямой b , обозначим b → . Вектор n → будет равняться векторному произведению a → и b → , что значит, n → = a → × b → . После определения координат a x , a y , a z и b x , b y , b z направляющих векторов заданных прямых a и b , вычисляем

n → = a → × b → = i → j → k → a x a y a z b x b y b z

Отсюда находим значение координат A , B , C нормального вектора к плоскости χ .

Знаем, что общее уравнение плоскости χ имеет вид A · ( x — x 2 ) + B · ( y — y 2 ) + C · ( z — z 2 ) = 0 .

Необходимо привести уравнение к нормальному виду cos α · x + cos β · y + cos γ · z — p = 0 . После чего нужно произвести вычисления искомого расстояния между скрещивающимися прямыми a и b , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 — p .

Чтобы найти расстояние между скрещивающимися прямыми a и b , необходимо следовать алгоритму:

  • определение координат ( x 1 , y 1 , z 1 ) и x 2 , y 2 , z 2 точек М 1 и М 2 , расположенных на прямых a и b соответственно;
  • получение координат a x , a y , a z и b x , b y , b z , принадлежащих направляющим векторам прямых a и b ;
  • нахождение координат A , B , C , принадлежащих вектору n → на плоскости χ , проходящей через прямую b , расположенную параллельно a , по равенству n → = a → × b → = i → j → k → a x a y a z b x b y b z ;
  • запись общего уравнения плоскости χ в виде A · x — x 2 + B · ( y — y 2 ) + C · ( z — z 2 ) = 0 ;
  • приведение полученного уравнения плоскости χ к уравнению нормального вида cos α · x + cos β · y + cos γ · z — p = 0 ;
  • вычисление расстояния M 1 H 1 от M 1 x 1 , y 1 , z 1 к плоскости χ , исходя из формулы M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 — p .

Пример 1

Имеются две скрещивающиеся прямые в прямоугольной системе координат О х у z трехмерного пространства. Прямая a определена параметрическим уравнением прямой в пространстве x = — 2 y = 1 + 2 · λ z = 4 — 3 · λ , прямая b при помощи канонического уравнения прямой в пространстве x 1 = y — 1 — 2 = z + 4 6 . Найти расстояние между скрещивающимися прямыми.

Понятно, что прямая а пересекает точку M 1 ( — 2 , 1 , 4 ) с направляющим вектором a → = ( 0 , 2 , — 3 ) , а прямая b пересекает точку M 2 ( 0 , 1 , — 4 ) с направляющим вектором b → = ( 1 , — 2 , 6 ) .

Для начала следует произвести вычисление направляющих векторов a → = ( 0 , 2 , — 3 ) и b → = ( 1 , — 2 , 6 ) по формуле. Тогда получаем, что

a → × b → = i → j → k → 0 2 — 3 1 — 2 6 = 6 · i → — 3 · j → — 2 · k →

Отсюда получаем, что n → = a → × b → — это вектор плоскости χ , который проходит через прямую b параллельно a с координатами 6 , — 3 , — 2 . Получим:

6 · ( x — 0 ) — 3 · ( y — 1 ) — 2 · ( z — ( — 4 ) ) = 0 ⇔ 6 x — 3 y — 2 z — 5 = 0

Находим нормирующий множитель для общего уравнения плоскости 6 x — 3 y — 2 z — 5 = 0 . Вычислим по формуле 1 6 2 + — 3 2 + — 2 2 = 1 7 . Значит, нормальное уравнение примет вид 6 7 x — 3 7 y — 2 7 z — 5 7 = 0 .

Необходимо воспользоваться формулой, чтобы найти расстояние от точки M 1 — 2 , 1 , 4 до плоскости, заданной уравнением 6 7 x — 3 7 y — 2 7 z — 5 7 = 0 . Получаем, что

M 1 H 1 = 6 7 · ( — 2 ) — 3 7 · 1 — 2 7 · 4 — 5 7 = — 28 7 = 4

Отсюда следует, что искомым расстоянием является расстояние между заданными скрещивающимися прямыми, является значение 4 .

Расстояние между двумя скрещивающимися прямыми

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения расстояния между скрещивающимися прямыми с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Читайте также  Фильмы про охоту на людей

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB1 (точку O) проведем прямую, параллельную прямой A1B. Точки пересечения данной прямой с ребрами BC и A1D1 обозначаем соответственно N и M. Прямая MN лежит в плоскости MNB1 и параллельна прямой A1B, которая в этой плоскости не лежит. Это означает, что прямая A1B параллельна плоскости MNB1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A1B до плоскости MNB1. Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA, ось Y — вдоль ребра BC, ось Z — вдоль ребра BB1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB1 в данной системе координат. Для этого определяем сперва координаты точек M, N и B1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле:

где — координаты точки B. — коэффициенты при переменных в уравнении плоскости. Точка B имеет координаты Получаем окончательно:

Ответ:

Нахождение расстояния между скрещивающимися прямыми

(blacktriangleright) Скрещивающиеся прямые – это прямые, через которые нельзя провести одну плоскость.

Признак скрещивающихся прямых: если первая прямая пересекает плоскость, в которой лежит вторая прямая, в точке, не лежащей на второй прямой, то такие прямые скрещиваются.

(blacktriangleright) Т.к. через одну из скрещивающихся прямых проходит ровно одна плоскость, параллельная другой прямой, то расстояние между скрещивающимися прямыми — это расстояние между одной из этих прямых и плоскостью, проходящей через вторую прямую параллельно первой.

Таким образом, если прямые (a) и (b) скрещиваются, то:

Шаг 1. Провести прямую (cparallel b) так, чтобы прямая (c) пересекалась с прямой (a) . Плоскость (alpha) , проходящая через прямые (a) и (c) , и будет плоскостью, параллельной прямой (b) .

Шаг 2. Из точки пересечения прямых (a) и (c) ( (acap c=H) ) опустить перпендикуляр (HB) на прямую (b) (первый способ).

Или из любой точки (B’) прямой (b) опустить перпендикуляр на прямую (c) (второй способ).

В зависимости от условия задачи какой-то из этих двух способов может быть гораздо удобнее другого.

В кубе (ABCDA_1B_1C_1D_1) , ребро которого равно (sqrt<32>) , найдите расстояние между прямыми (DB_1) и (CC_1) .

Прямые (DB_1) и (CC_1) скрещиваются по признаку, т.к. прямая (DB_1) пересекает плоскость ((DD_1C_1)) , в которой лежит (CC_1) , в точке (D) , не лежащей на (CC_1) .

Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой (CC_1) и плоскостью, проходящей через (DB_1) параллельно (CC_1) . Т.к. (DD_1parallel CC_1) , то плоскость ((B_1D_1D)) параллельна (CC_1) .
Докажем, что (CO) – перпендикуляр на эту плоскость. Действительно, (COperp BD) (как диагонали квадрата) и (COperp DD_1) (т.к. ребро (DD_1) перпендикулярно всей плоскости ((ABC)) ). Таким образом, (CO) перпендикулярен двум пересекающимся прямым из плоскости, следовательно, (COperp (B_1D_1D)) .

(AC) , как диагональ квадрата, равна (ABsqrt2) , то есть (AC=sqrt<32>cdot sqrt2=8) . Тогда (CO=frac12cdot AC=4) .

Дан куб (ABCDA_1B_1C_1D_1) . Найдите расстояние между прямыми (AB_1) и (BC_1) , если ребро куба равно (a) .

1) Заметим, что эти прямые скрещиваются по признаку, т.к. прямая (AB_1) пересекает плоскость ((BB_1C_1)) , в которой лежит (BC_1) , в точке (B_1) , не лежащей на (BC_1) .
Расстояние между скрещивающимися прямыми будем искать как расстояние между прямой (BC_1) и плоскостью, проходящей через (AB_1) параллельно (BC_1) .

Для этого проведем (AD_1) — она параллельна (BC_1) . Следовательно, по признаку плоскость ((AB_1D_1)parallel BC_1) .

2) Опустим перпендикуляр (C_1H) на эту плоскость и докажем, что точка (H) упадет на продолжение отрезка (AO) , где (O) – точка пересечения диагоналей квадрата (A_1B_1C_1D_1) .
Действительно, т.к. по свойству квадрата (C_1Operp B_1D_1) , то по теореме о трех перпендикуляр проекция (HOperp B_1D_1) . Но (triangle AB_1D_1) равнобедренный, следовательно, (AO) – медиана и высота. Значит, точка (H) должна лежать на прямой (AO) .

3) Рассмотрим плоскость ((AA_1C_1)) .

(triangle AA_1Osim triangle OHC_1) по двум углам ( (angle AA_1O=angle OHC_1=90^circ) , (angle AOA_1=angle HOC_1) ). Таким образом,

По теореме Пифагора из (triangle AA_1O) : [AO=sqrt2>=dfrac2a.]

Следовательно, из ((*)) теперь можно найти перпендикуляр

Дан куб (ABCDA_1B_1C_1D_1) . Найдите расстояние между прямыми (A_1B) и (AC_1) , если ребро куба равно (sqrt6) .

По определению угол между скрещивающимися прямыми — это угол между одной прямой и плоскостью, проходящей через вторую прямую параллельно первой. Найдем плоскость, проходящую через (A_1B) параллельно (AC_1) .

Заметим, что данные прямые являются скрещивающимися. Т.к. (B_1C_1perp (AA_1B_1)) , то проекция наклонной (AC_1) на эту плоскость – это прямая (AB_1) .

Пусть (AB_1cap A_1B=O) . Опустим из точки (O) на (AC_1) перпендикуляр (OK) и докажем, что это и есть искомое расстояние. Т.к. по определению расстояние между скрещивающимися прямыми – длина отрезка, перпендикулярного обеим прямым, то осталось доказать, что (OK) перпендикулярен прямой (A_1B) .
Действительно, проведем (KHparallel B_1C_1) (следовательно, (Hin AB_1) ). Тогда т.к. (B_1C_1perp (AA_1B_1)) , то и (KHperp (AA_1B_1)) . Тогда по теореме о трех перпендикулярах (т.к. проекция (HOperp A_1B) ) наклонная (KOperp A_1B) , чтд.
Таким образом, (KO) – искомое расстояние.

Заметим, что (triangle AOKsim triangle AC_1B_1) (по двум углам). Следовательно,

Расстояние между скрещивающимися прямыми: формула

Вы будете перенаправлены на Автор24

Скрещивающиеся прямые — это прямые, не лежащие в одной плоскости и не пересекающиеся между собой.

Наименьшим расстоянием между двумя скрещивающимися прямыми является перпендикуляр, опущенный с одной прямой на другую. У каждой пары скрещивающихся прямых при этом есть только один такой общий перпендикуляр.

Рисунок 1. Кратчайшее расстояние между скрещивающимися прямыми. Автор24 — интернет-биржа студенческих работ

Через каждую из скрещивающихся прямых возможно провести лишь одну плоскость, параллельную второй скрещивающейся прямой, соответственно, для определения расстояния между скрещивающимися прямыми, достаточно определить расстояние между одной из скрещивающихся прямых и плоскостью, на которой лежит вторая прямая.

Соответственно, задачу поиска расстояния между прямой и параллельной ей плоскостью можно свести к поиску расстояния между любой точкой, лежащей на вышеозначенной прямой, и плоскостью.

Как найти расстояние между скрещивающимися прямыми: координатный метод

Рассмотрим методику нахождения расстояния между двумя скрещивающимися прямыми $L_1$ и $L_2$ через координатный метод.

Прежде всего необходимо найти уравнение плоскости $β$, параллельной прямой $L_1$. Для этого необходимо найти векторное произведение направляющих векторов прямых $L_1$ и $L_2$, данное произведение представляет собой координаты нормального вектора плоскости $β$:

Читайте также  Диафрагма в фотоаппарате – что это?

При вычислении выражения $(1)$ мы получим коэффициенты для общего уравнения плоскости $β$ — $A, B$ и $C$.

Готовые работы на аналогичную тему

Для того чтобы записать всё общее выражение плоскости, подставим координаты любой точки, лежащей на $L_2$ в общую форму, например, можно подставить точку с координатами $(x_2;y_2; z_2)$, получим следующее:

$A (x-x_2) + B (y – y_2) + C(z- z_2) + D=0$.

Теперь достаточно выбрать любую точку на прямой $L_1$, пусть это будет точка $M_1$ с координатами $(x_1;y_1; z_1)$.

Расстояние от плоскости $β$ до точки $M_1$ составит:

где $A, B, C$ и $D$ — коэффициенты уравнения плоскости $β$, а $(x_1;y_1; z_1)$ — координаты точки, лежащей на прямой $L_1$.

Данная формула позволяет высчитать расстояние между двумя скрещивающимися прямыми.

Определить расстояние между скрещивающимися прямыми $L_1$ и $L_2$.

Найдём нормальный вектор плоскости, в которой лежит прямая $L_2$, для этого выпишем направляющие вектора для каждой из прямых:

$L_1: vec= <2;-3;-1>$, точка на этой прямой — $(2;-1;0)$

$L_2: vec= <1;-2;0>$, точка на этой прямой — $(-1;0;1)$

Теперь найдём векторное произведение векторов $vec$ и $vec$, полученный вектор является нормальным вектором плоскости, в которой лежит $L_2 $:

$[veccdot vec]= begin <|ccc|>i &j &k \ 2 &-3 &-1 \ 1 &-2 &0 \ end=((-3) cdot 0 -2) cdot vec + (2 cdot 0 + 1)vec + ((-4) + 3) cdot vec = -2vec + vec -k = <-2;1;-1>$

Подставим координаты точки $(-1;0;1)$, принадлежащей прямой $L_2$, в общее уравнение плоскости:

$-2 cdot (x+1) + (y-0) – 1 cdot(z-1)=0$

Упрощаем и в конечном итоге имеем следующее уравнение плоскости:

Теперь, используя координаты точки $(2;-1;0)$, лежащей на первой прямой, можно воспользоваться формулой $(2)$ для вычисления расстояния между двумя скрещивающимися прямыми:

Координатная формула вычисления расстояния между скрещивающимися прямыми

Также аналогичное уравнение для поиска расстояния между скрещивающимися прямыми можно использовать сразу в полной координатной форме:

$ρ=frac <|ccc|>l_1 & m_1 &n_1\ l_2 &m_2 &n_2\ (x_2 – x_1) &(y_2-y_1) &(z_2-z_1) \ end> <|cc|>m_1 &n_1 \ m_2 &n_2 \ end^2 + begin <|cc|>l_1 &n_1 \ l_2 &n_2 \ end^2 + begin <|cc|>l_1 &m_1 \ l_2 &m_2 \ end^2>>left(3right)$

Для того чтобы воспользоваться данной формулой, возможно нужно освежить в памяти способы нахождения определителей матриц.

Найти расстояние между вышеприведёнными прямыми с помощью формулы $(3)$.

Выпишем сначала точки, принадлежащие данным прямым и их направляющие векторы:

$L_1$ имеет направляющий вектор $<2; -3; -1>$, а принадлежащая ей точка имеет координаты $(2; -1; 0)$.

$L_2$ имеет направляющий вектор $<1; -2; 0 >$, а принадлежащая ей точка имеет координаты $(-1; 0; 1)$.

Метод координат

Для решения задачи по стереометрии координатным методом нужно выбрать декартову систему координат. Ее можно выбрать как угодно, главное, чтобы она была удобной. Приведем примеры выбора системы координат в кубе, пирамиде и конусе:

Далее необходимо найти координаты основных точек в выбранной системе координат. Это могут быть вершины объемной фигуры, середины ребер или любые другие точки, указанные в условии задачи. Найдем координаты куба и правильной пирамиды (предположим, что все ребра равны (4)):

Куб: Очевидно, что координаты точки (A) в начале координат — ((0;0;0)). т. (B) — ((4;0;0)), т. (G) — ((4;4;4)) и т.д. (Рис. 1).

С кубом все просто, но в других фигурах могут возникнуть трудности с нахождением координат.

Давайте рассмотрим правильную пирамиду (ABCD):

    У (т. A) координаты ((0;0;0)), потому что она лежит в начале координат.

Координату (x) точки (С) можно получить, опустив перпендикуляр (CE) из (т.С) на ось (OX). (см. Рис. 2). Получится (т.E), указывающая на искомую координату по (x) – 2.

Координату (y) точки (С) тоже получаем, опустив перпендикуляр (CF) на ось (OY). Координата (y) (т.С) будет равна длине отрезка (AF=CE). Найдем его по теореме Пифагора из треугольника (AFC): $$ ^2=^2+^2,$$ $$ 4^2=2^2+^2,$$ $$ CE=sqrt<12>. $$ Координата (z) точки (C), очевидно, равна (0), потому что (т.С) лежит в плоскости (XOY). $$ C (2;sqrt<12>; 0). $$

И найдем координаты вершины пирамиды ((т.D)). (Рис. 3) Координаты (X) и (Y) у точки (D) совпадают с координатами (X) и (Y) у точки (H). Напомню, что высота правильной треугольной пирамиды падает в точку пересечения медиан, биссектрис и высот. Отрезок (EH=frac<1><3>*CE=frac<1><3>*sqrt<12>) (медианы в треугольнике точкой пересечения делятся в отношении как (frac<1><3>)) и равен координате точки (D) по (Y). Длина отрезка (IH=2) будет равна координате точки (D) по (X). А координата по оси (Z) равна высоте пирамиде: $$ ^2=^2+^2, $$ $$ =sqrt<4^2-<3>*AF>^2>, $$ $$ =frac<32><3>. $$ $$ D (2, frac<1><3>*sqrt<12>, frac<32><3>). $$

Координаты вектора

Вектор – отрезок, имеющий длину и указывающий направление.

На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.

Для того, чтобы определить координаты вектора, нужно из координат конечной точки вычесть координаты начальной точки. Пусть у нас есть две точки (Рис. 4) : $$ т.А(x_A,y_A,z_A); $$ $$ т.B(x_B,y_B,z_B); $$ Тогда координаты вектора (vec) можно определить по формуле: $$ vec=. $$

Скрещивающиеся прямые

И так, мы научились находить координаты точек, и при помощи них определять координаты векторов. Теперь познакомимся с формулой нахождения косинуса угла между скрещивающимися прямыми (векторами). Пусть даны два вектора: $$ a=;$$ $$ b=; $$ тогда угол (alpha) между ними находится по формуле: $$ cos=frac^2+^2+^2>*sqrt<^2+^2+^2>>. $$

Уравнение плоскости

В задачах №14 (С2) ЕГЭ по профильной математике часто требуется найти угол между прямой и плоскостью и расстояние между скрещивающимися прямыми. Но для этого вы должны уметь выводить уравнение плоскости. В общем виде уравнение плоскости задается формулой: $$ A*x+B*y+C*z+D=0,$$ где (A,B,C,D) – какие-то числа.

Если найти (A,B,C,D), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.

Например, пусть даны три точки:

Подставим координаты точек в общее уравнение плоскости:

$$begin A*x_K+B*y_K+C*z_K+D=0,\ A*x_L+B*y_L+C*z_L+D=0, \ A*x_P+B*y_P+C*z_P+D=0.end$$

Получилась система из трех уравнений, но неизвестных 4: (A,B,C,D). Если наша плоскость не проходит через начало координат, то мы можем (D) приравнять (1), если же проходит, то (D=0). Объяснение этому простое: вы можете поделить каждое ваше уравнения на (D), от этого уравнение не изменится, но вместо (D) будет стоять (1), а остальные коэффициенты будут в (D) раз меньше.

Теперь у нас есть три уравнения и три неизвестные – можем решить систему:

Найти уравнение плоскости, проходящей через точки $$ K(1;2;3);,P(0;1;0);,L(1;1;1). $$ Подставим координаты точек в уравнение плоскости (D=1): $$begin A*1+B*2+C*3+1=0,\ A*0+B*1+C*0+1=0, \ A*1+B*1+C*1+1=0.end$$ $$begin A+2*B+3*C+1=0,\ B+1=0, \ A+B+C+1=0.end$$ $$begin A-2+3*C+1=0,\ B=-1, \ A=-C.end$$ $$begin A=-0.5,\ B=-1, \ C=0.5.end$$ Получаем искомое уравнение плоскости: $$ -0.5x-y+0.5z+1=0.$$

Расстояние от точки до плоскости

Зная координаты некоторой точки (M(x_M;y_M;z_M)), легко найти расстояние до плоскости (Ax+By+Cz+D=0:) $$ rho=frac<|A*x_M+B*y_M+C*z_M+D|>>. $$

Найдите расстояние от т. (H (1;2;0)) до плоскости, заданной уравнением $$ 2*x+3*y-sqrt<2>*z+4=0.$$

Из уравнения плоскости сразу находим коэффициенты: $$ A=2,,B=3,,C=-sqrt<2>,,D=4.$$ Подставим их в формулу для нахождения расстояния от точки до плоскости. $$ rho=frac<|2*1+3*2-sqrt<2>*0+4|>>^2>>. $$ $$ rho=frac<12>>=3.$$

Читайте также  Как избавиться от дрожания рук

Расстояние между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.

Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).

Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.

Дана правильная треугольная призма (ABCFDE), ребра которой равны 2. Точка (G) — середина ребра (CE).

  • Докажите, что прямые (AD) и (BG) перпендикулярны.
  • Найдите расстояние между прямыми (AD) и (BG).

Решим задачу полностью методом координат.

Нарисуем рисунок и выберем декартову систему координат. (Рис 5).

Расстояние между скрещивающимися прямыми.

Описание презентации по отдельным слайдам:

Учитель: Бондаренко Татьяна Викторовна б — null

Тема: Определение расстояния между скрещивающимися прямыми Цель урока: Научить определять расстояние между скрещивающимися прямыми. Задачи урока: Обучающие: -Дать определение скрещивающихся прямых -Научить строить общий перпендикуляр для двух скрещивающихся прямых Развивающие: -Продолжить дальнейшее формирование пространственного воображения -Развивать аналитическое мышление Воспитательные: -Усилить мотивацию изучения геометрии -Воспитывать умение достигать поставленной цели.

Определение: Скрещивающимися называются прямые , лежащие в разных плоскостях. Примеры скрещивающихся прямых в окружающей среде

Определение 1: Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра. Определение 2: Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых. Скрещивающиеся прямые – Их общий перпендикуляр — Именно построение общего перпендикуляра вызывает наибольшую сложность Этому и посвящена данная разработка

Существует три способа определения расстояния между скрещивающимися прямыми Расстояние между скрещивающимися прямыми равно длине перпендикуляра, опущенного из: 1) любой точки одной из прямых на плоскость, проходящую через другую прямую, параллельно первой прямой а b α h 2) любой точки плоскости, проходящей через одну из прямых на параллельную ей плоскость, проходящую через другую прямую. b а α β h 3) точки пересечения одной из прямых с перпендикулярной ей плоскостью на другую прямую, лежащую в этой плоскости. h a b α O Рассмотрим каждый из этих способов отдельно

Расстояние между скрещивающимися прямыми равно длине перпендикуляра, опущенного из любой точки одной из прямых на плоскость, проходящую через другую прямую, параллельно первой прямой Чтобы найти расстояние между ними надо: 1.Провести плоскость α через прямую а параллельно прямой b 2.Из любой точки прямой b опустить перпендикуляр на прямую а Даны две скрещивающиеся прямые а и b Пример: построить общий перпендикуляр к диагонали В1D прямоугольного параллелепипеда ABCDA1B1C1D1 и боковому ребру С1С b a h α h- искомое расстояние А В С D A1 B1 C1 D1 F Построить плоскость, содержащую прямую В1D и параллельную прямой С1С * 2. Из точки С прямой С1С опустить перпендикуляр СF на плоскость ВВ1D1D. 1-ый способ h

2-ой способ Расстояние между скрещивающимися прямыми равно длине перпендикуляра опущенного из любой точки плоскости, проходящей через одну из прямых на параллельную ей плоскость, проходящую через другую прямую. Даны две скрещивающиеся прямые а и b α β а b h Для того, чтобы найти расстояние между ними надо: 1.Построить плоскости α ║ β, содержащие прямые а и b соответственно. 2.Из любой точки плоскости α опустить перпендикуляр h на плоскость β Пример: Найти расстояние между двумя диаметрами верхнего и нижнего оснований цилиндра h Так как диаметры лежат в параллельных плоскостях (основания цилиндра параллельны).то расстоянием между этими диаметрами является образующая цилиндра, так как она перпендикулярна обоим основаниям. d1 d2 h – искомое расстояние

Расстояние между скрещивающимися прямыми равно длине перпендикуляра, опущенному из точки пересечения одной из прямых с перпендикулярной ей плоскостью на другую прямую, лежащую в этой плоскости. Даны две скрещивающиеся прямые а и b Чтобы найти расстояние между ними надо: 1.Построить плоскость α, содержащую прямую b и перпендикулярную прямой а (прямая а пересекает плоскость α в точке О) 2.Из точки О опустить перпендикуляр h на прямую b. Пример: Найти расстояние между ребром основания ВС куба и диагональю АВ1 смежной боковой грани (диагональ не пересекает это ребро). а b О α h h – искомое расстояние 3 – ий способ В1 С1 D1 A1 B C D A 1. Плоскость АА1В1В перпендикулярна прямой ВС и содержит прямую АВ1. Значит, именно из точки В – точки пересечения прямой ВС и плоскости АА1В1В – надо опустить перпендикуляр h на прямую АВ1 h

Примечание: Дано: прямая а параллельна плоскости α ( для удобства пространственного восприятия чертежа, прямая а изображена в плоскости β) Построить перпендикуляр к прямой а и плоскости α Расстояние между прямой и параллельной ей плоскостью равно длине перпендикуляра опущенного на линию пересечения данной плоскости с плоскостью ей перпендикулярной из точки пересечения перпендикулярной плоскости с заданной прямой. β α a Для этого надo: 1.Построить плоскость γ , перпендикулярную плоскости α 2.Из точки пересечения прямой а с плоскостью γ (точки О) опустить перпендикуляр h напрямую b, по которой пересекаются плоскости α и γ b О γ h 1 2 3

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

Курс повышения квалификации

Охрана труда

Курс профессиональной переподготовки

Охрана труда

Онлайн-конференция для учителей, репетиторов и родителей

Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

  • Бондаренко Татьяна ВикторовнаНаписать 5157 20.01.2016

Номер материала: ДВ-361778

  • Другое
  • 10 класс
  • Презентации

Международная дистанционная олимпиада Осень 2021

    20.01.2016 583
    20.01.2016 2868
    20.01.2016 5413
    20.01.2016 529
    20.01.2016 441
    20.01.2016 456
    20.01.2016 478

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Более 600 школ в регионах России закрыто из-за коронавируса

Время чтения: 1 минута

В школе в Пермском крае произошла стрельба

Время чтения: 1 минута

Рособрнадзор оставил за регионами решение о дополнительных школьных каникулах

Время чтения: 1 минута

Рособрнадзор проведет исследование качества образования в школах

Время чтения: 2 минуты

Рособрнадзор соберет данные о частоте проведения контрольных работ в школах

Время чтения: 1 минута

Российским школьникам проведут бесплатные профориентационные тесты

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: