Как найти наименьший положительный период функции

Периодические функции

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, — периодические функции.

Дадим определение периодической функции:

Функция называется периодической, если существует такое число , не равное нулю, что для любого из ее области определения

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа . Число называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, — периодические функции.

Для функций и период ,

Для функций и период

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция определена для всех действительных чисел. Ее период равен двум и Найдите значение выражения

График функции может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции . Поскольку период функции равен 2, значения функции в точках будут также равны пяти. Здесь k — целое число.

Как ведет себя функция в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции в точках -3 и 7 равны пяти. Мы получим:

2. График четной периодической функции совпадает с графиком функции на отрезке от 0 до 1; период функции равен 2. Постройте график функции и найдите f(4 ).

Построим график функции при

Поскольку функция четная, ее график симметричен относительно оси ординат. Построим часть графика при симметричную части графика от 0 до 1.

Период функции равен 2. Повторим периодически участок длины 2, который уже построен.

3. Найдите наименьший положительный период функции

Наименьший положительный период функции равен

График функции получается из графика функции сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции частота в 3 раза больше, чем у функции , а наименьший положительный период в 3 раза меньше и равен . Значит, на отрезке укладывается ровно 3 полных волны функции

Рассуждая аналогично, получим, что для функции наименьший положительный период равен На отрезке укладывается ровно 5 полных волн функции

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции равен .

4. Период функции равен 12, а период функции равен 8. Найдите наименьший положительный период функции

По условию, период функции равен 12. Это значит, что все значения повторяются через 12, через . Если мы выберем любую точку на графике функции то через значение функции будет такое же, как и в точке

Аналогично, все значения функции повторяются через . В этих точках значения будут такие же, как и в точке

На каком же расстоянии от точки расположена точка, в которой значение функции такое же, что и в точке ? Очевидно, на расстоянии Это значит, что число делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых.

Уроки математики и физики для школьников и родителей

суббота, 4 сентября 2021 г.

Урок 5. Периодичность тригонометрических функций

Периодические функции.

Функцию у = f (х) , хХ , называют периодической , если существует такое отличное от нуля число Т , что для любого х из области определения функции справедливо равенство:

f (х + Т) = f (х) = f (хТ) .

Число Т называют периодом функции у = f (х) .

Из этого определения сразу следует, что если Т – период функции

у = f (х) , то

2Т, 3Т, 4Т, –Т, –2Т, –3Т, –4Т

– также периоды функций. Значит у периодической функции бесконечно много периодов.

Если Т – период функции, то число вида k Т , где k – любое целое число, также является периодом функции.

Чаще всего (но не всегда) среди множества положительных периодов функции можно найти наименьший. Его называют основным периодом .

График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.

Графики периодических функций обладают следующей особенностью. Если Т – основной период функции у = f (х) , то для построения её графика достаточно построить ветвь графика на одном из промежутков оси х длиной Т , а затем осуществить параллельный перенос этой ветви по оси х на

± Т, ± 2Т, ± 3Т, …

(– Т / 2 ; 0) и ( Т / 2 ; 0) или

(0; 0) и (Т; 0) .

Рассмотрим функцию

у = х – [х] , где [х] – целая часть числа. Если к произвольному значение аргумента этой функции добавить 1 , то значение функции от этого не изменится :

f (x + 1) = (x +1) [x + 1] = x + 1 [x] 1 = x – [x] = f (x).

Следовательно, при любом значении х

f (x + 1) = f(x).

А это значит, что рассматриваемая функция периодическая, период которой равен 1 . Любое целое число также является периодом данной функции, но обычно рассматривают только маленький положительный период функции.

Возьмём произвольный угол α и построим подвижной радиус ОМ единичной окружности такой, что угол, составленный с осью Ох этим радиусом, равен α .

Если мы к углу прибавим или 360 ° (то есть полный оборот), то углу α + или α + 360 ° будет соответствовать то же положение подвижного радиуса ОМ , что для угла α .

sin (α + 2π) = sin α или

sin (α + 360 ° ) = sin α

cos (α + 2π) = cos α или

cos (α + 360 ° ) = cos α .

Таким образом, функции sin α и cos α от прибавления к аргументу α одного полного оборота ( 2π или 360 ° ) не меняют своих значений.

Точно так же, прибавляя к углу α любое целое число полных оборотов, мы не изменим положения подвижного радиуса ОМ , а потому:

sin (α + 2 k π ) = sin α или

sin (α + 360 ° k ) = sin α

cos (α + 2 k π ) = cos α или

cos (α + 360 ° k ) = cos α ,

где k – любое целое число.

Функции, обладающие таким свойством, что их значения не изменяются от прибавления к любому допустимому значению аргумента определённого постоянного числа, называются периодическими .

Следовательно, функции sin α и cos α – периодические.

Наименьшее положительное число, от прибавления которого к любому допустимому значению аргумента не изменяется значение функции, называется периодом функции.

Периодом функции sin α и cos α является 2π или 360 ° .

Функции tg α и с tg α также периодические и их периодом является число π или 180 ° .

В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным радиусом ОМ единичной окружности.

Построим точку М ‘,

Если х и у – координаты точки М , то точки М будут –х и –у . Поэтому

sin α = у, cos α = х,

sin (α + π) = –у,

cos (α + π) = –х.

tg (α + π) = tg α,

с tg (α + π) = с tg α .

отсюда следует, что значения tg α и с tg α не изменяются, если к углу α прибавить любое число полуоборотов:

tg (α + k π ) = tg α,

с tg (α + k π ) = с tg α .

где k – любое целое число.

y = A sin ( ωx + φ ) и

y = A cos ( ωx + φ )

вычисляются по формуле

T = 2π /ω ,

а период функции

y = A tg ( ωx + φ )

T = π /ω .

Если период функции y = f ( x ) равен T 1 , а период функции y = g ( x ) равен T 2 , то период функций

y = f ( x ) + g ( x ) и

y = f ( x ) g ( x )

равен наименьшему числу, при делении которого на T 1 и T 2 получаются целые числа.

Найти период функции

Читайте также  Когда ловится щука

y = 3 sin (x – 2) + 7 со s π x .

Период функции

y = 3 sin ( x – 2)

T 1 = 2π / 1 = 2π .

Период функции

y = 7 со s π x

Периода у функции

y = 3 sin ( x – 2) + 7 со s π x

не существует, так как такого числа, при делении которого на и на 2 получались бы целые числа, нет.

Периода не существует.

Доказать следующее утверждение :

tg 3850 ° = tg 250 ° .

Так как тангенс – периодическая функция с минимальным периодом 20 ∙ 180 ° , то получим :

tg 3850 ° = tg (20 ∙ 180 ° + 250 ° ) = tg 250 ° .

Доказать следующее утверждение :

сos (–13π) = –1.

Так как косинус – чётная и периодическая функция с минимальным периодом 2π , то получим :

сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.

Доказать следующее утверждение :

sin (–7210 ° ) = – sin 10 ° .

Так как синус – нечётная и периодическая функция с минимальным периодом 20 ∙ 360 ° , то получим :

sin (–7210 ° ) = –sin 7210 ° = –sin (20 ∙ 360 ° + 10 ° ) – sin 10 ° .

ПРИМЕР :

Найти основной период функции

Пусть Т основной период функции, тогда:

sin 7х = sin 7(х + t ) = sin (7х + 7 t )

так как 2 πk период синуса, то получим :

sin (7х + 7 t ) = sin (7х + 2 πk ),

Найти основной период функции

Пусть Т основной период функции, тогда:

со s 0,3х = со s 0,3(х + t ) = со s (0,3х + 0,3 t )

так как 2 πk период косинуса, то получим :

со s (0,3х + 0,3 t ) = со s (0,3х + 2 πk ),

Найти период функции :

y = 5 sin 2 x + 2 ctg 3х.

Период функции

y = 5 sin 2 x

равен Т 1 = 2 / 2 = π ,

а период функции

y = 2 ctg 3х

равен Т 2 = / 3 .

Наименьшее число, при делении которого на

Т 1 = π и Т 2 = / 3

– получаются целые числа будет число π . Следовательно, период заданной функции равен Т = π .

Найти период функции :

y = 9 sin (5 x + π / 3 ) – 4 c о s (7х + 2).

Находим периоды слагаемых. Период функции

y = 9 sin (5 x + π / 3 )

равен Т 1 = 2 / 5 ,

а период функции

y = 4 c о s (7х + 2)

равен Т 2 = 2 / 7 .

Очевидно, что период заданной функции равен

Т = 2π .

Найти период функции :

y = 3 sin π x + 8 tg (х + 5).

Период функции

y = 3 sin π x

равен Т 1 = 2 π / π = 2,

а период функции

y = 8 tg (х + 5)

равен Т 2 = / 1 = π.

Периода у заданной функции не существует, так как нет такого числа, при делении которого на 2 и на π одновременно получались бы целые числа.

Найти период функции :

y = sin 3 x + со s 5х.

Период функции

y = sin 3 x

равен Т 1 = 2 π / 3 ,

а период функции

y = со s 5х

равен Т 2 = 2 π / 5 .

Приведём к общему знаменателю периоды :

Т 1 = 10 π / 15 , Т 2 = 6 π / 15 .

Тогда наименьшее общее кратное (НОК) будет :

НОК (10π; 6π) = 30π.

Теперь найдём период заданной функции :

Т = 30 π / 15 = 2π .

Исследование функции на периодичность

Разделы: Математика

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+18 0º)
y=ctg(x) = ctg(x+180º)

tg(x+ π n)=tgx, n € Z
ctg(x+ π n)=ctgx, n € Z

sin(x+2 π n)=sinx, n € Z
cos(x+2 π n)=cosx, n € Z

5) Как построить график периодической функции?

1) Доказать следующие соотношения

a) sin( 740º ) = sin(2 0º )
b) cos( 54º ) = cos(-1026º)
c) sin(-1000º) = sin( 80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg 375º
b) ctg 530º
c) sin 1268º
d) cos (-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим , а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+35>

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

Положим x=-0,25 получим

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1. Проверим, не будет ли оно и на самом деле периодом 1.

Так как = при любом Т, то f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

Допустим Т-период функции, тогда для любого х справедливо соотношение

Периодические функции
методическая разработка по алгебре (10 класс) по теме

Систематизация свойств периодических функций. Их применение при решении различных задач математического анализа

Скачать:

Вложение Размер
periodicheskie_funktsii.doc 128 КБ

Предварительный просмотр:

Муниципальное общеобразовательное учреждение

средняя общеобразовательная школа № 3

С О Д Е Р Ж А Н И Е

Периодические функции и их свойства ……………. 4-6

Отметим, что у задач на периодичность в учебно-методической литературе нелёгкая судьба. Объясняется это странной традицией-допускать те или иные небрежности в определении периодических функций, которые приводят к к спорным решениям и провоцируют инциденты на экзаменах.

Например, в книге «Толковый словарь математических терминов» — М, 1965г., даётся следующее определение: «периодическая функция – функция

y = f(х), для которой существует число t > 0, что для всех х и х+t из области определения f(x + t) = f(х).

Приведём контр-пример, показывающий некорректность этого определения. По этому определению периодической с периодом t = 2π будет функция

с(x) = Cos(√x) 2 – Cos(√4π — x) 2 с ограниченной областью определения [0; 4π], что противоречит общепринятой точке зрения о периодических функциях.

Аналогичные проблемы возникают и во многих новейших альтернативных учебниках для школы.

В учебнике А.Н.Колмогорова приводится следующее определение: «Говоря о периодичности функции f, полагают, что имеется такое число Т ≠ 0, что область определения Д (f) вместе с каждой точкой х содержит и точки, получающиеся из х параллельным переносом вдоль оси Ох (вправо и влево) на расстояние Т. Функцию f называют периодической с периодом Т ≠ 0, если для любого из области определения значения этой функции в точках х, х – Т, х + Т равны, т.е. f (х + Т) = f (х) = f (х – Т)». Далее в учебнике написано: «Поскольку синус и косинус определена на всей числовой прямой и Sin (х + 2π) = Sin х,

Cos (х + 2π) = Cos х для любого х, синус и косинус – период функции с периодом 2π».

В этом примере почему-то не проверяется требуемое в определении условия что

Sin (х – 2π) = Sin х. В чём дело? Дело в том, что это условие в определении лишнее. Действительно, ведь если Т > 0 – период функции f(х), то Т тоже будет являться периодом этой функции.

Хочу привести ещё одно определение из учебника М.И.Башмакова «Алгебра и начала анализа 10-11 кл.» «Функция у = f(х) называется периодической, если существует такое число Т ≠ 0, что равенство

f (х + Т) = f(х) выполняется тождественно при всех значениях х».

В приведённом определении ничего не говорится об области определения функции, хотя имеется в виду х из области определения, не любые действительные х. По такому определению периодической может быть функция у = Sin (√х) 2 , определенная только при х ≥ 0, что неверно.

В едином государственном экзамене имеются задачи на периодичность. В одном научно- периодическом журнале в качестве тренинга по разделу С ЕГЭ было приведено решение задачи: « является ли функция у (х) = Sin 2 (2+х) – 2 Sin 2 Sin х Cos (2+х) периодической?»

В решении проявляется, что у (х – π) = у (х) в ответе – лишняя запись

«Т = π» (ведь вопрос о нахождении наименьшего положительного периода не ставиться). Так ли необходимо для решения этой задачи проводить непростое тригонометрическое образование. Ведь здесь можно ориентироваться на понятие периодичности, как на ключевое в условии задачи.

f 1 (x) = Sin х – периодическая функция с периодом Т = 2π

f 2 (x) = Cos х – периодическая функция с периодом Т = 2π, тогда 2π – период и для функций f 3 (x) = Sin (2 + х) и f 4 (x) = Cos (2 + х), (это следует из определения периодичности)

f 5 (x) = — 2 Sin 2 = Const, её периодом является любое число, в том числе и 2π.

Т.к. сумма и произведение периодических функций с общим периодом Т, также является Т-периодичной, то данная функция периодичная.

Надеюсь, что приведённый в этой работе материал, поможет при подготовке к единому государственному экзамену в решении задач на периодичность.

Презентация»Периодичность тригонометрических функций»(11 класс,профильное обучение)

Описание презентации по отдельным слайдам:

Периодичность тригонометрических функций 11 класс

Определение: Функция f(x) называется периодической, если существует такое число Т≠0,что для любого х из области определения этой функции значения х+Т и х-Т также принадлежат области определения и выполняются равенства f(x-Т)=f(x)=f(x+Т). Число Т называется периодом функции f(x)

Задача1 Доказать,что f(x)=sinx+1 является периодической с периодом 2π Решение: Функция f(x)=sinx+1 определена на R. f(x+2π)=sin(x+2π)+1=sinx+1=f(x)

Задача 2 Доказать ,что функция f(x)= является периодической с периодом 2π Решение: x f(x+2π)=

Задача 3 Доказать,что f(x)= является периодической с периодом 2π Решение: x f (x+2π)=

Задача 4 Доказать ,что функция f(x) =sin2x является периодической с периодом Т=π Решение: f (x+π)=sin2(x+π)=sin(2x+2π)=sin2x=f(x) x

Задача 5 Доказать ,что функция f(x)=tg2x является периодической с периодом Т= Решение:

Задача 6 Найти наименьший положительный период функции Решение: f(x+Т)=f(x) Наименьший положительный период при n=1

Задача 7 Найти наименьший положительный период функции Решение:

Наименьший положительный период функции при n=1 Т=2π

Следствие: Если f(x) имеет период Т,то f(kx) имеет период Например ,y=sinx Т=2π. y=sin5x,Т=

Задача 8 Найти наименьший положительный период функции Решение: Функция y=cosx имеет период 2π. Функция имеет период

Задача 9 Найти наименьший положительный период функции Решение: Так как функция sin2x имеет период а функция cos3x имеет период то период Т функции будет такое наименьшее положительное число, которое кратно одновременно,т.е.наименьшее общее кратное.Т=2π

Задача 10 Найти наименьший положительный период функции Решение: Так как функция имеет период а функция имеет период то период Т функции будет такое наименьшее положительное число, которое кратно одновременно,т.е наименьшее общее кратное. Т=6π

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Онлайн-конференция для учителей, репетиторов и родителей

Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

  • Архипова Валентина МакарьевнаНаписать 4255 03.10.2016

Номер материала: ДБ-233469

  • Алгебра
  • 11 класс
  • Презентации

Международная дистанционная олимпиада Осень 2021

    03.10.2016 249
    03.10.2016 2446
    03.10.2016 1565
    03.10.2016 196
    03.10.2016 235
    03.10.2016 492

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

В школе в Пермском крае произошла стрельба

Время чтения: 1 минута

Рособрнадзор проведет исследование качества образования в школах

Время чтения: 2 минуты

Рособрнадзор оставил за регионами решение о дополнительных школьных каникулах

Время чтения: 1 минута

В России запустят телепроект о российских вузах

Время чтения: 1 минута

Интерес российской молодежи к книгам вырос на 62,7%

Время чтения: 1 минута

Стартовал Всероссийский конкурс «Лучшая столовая школы»

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Как найти наименьший положительный период функции

Минимальный позитивный период функции в тригонометрии обозначается f. Он характеризуется наименьшим значением позитивного числа T, то есть поменьше его значение T теснее не будет являться период ом функции .

Вам понадобится

  • – математический справочник.

Инструкция

1. Обратите внимание на то, что период ическая функция не неизменно имеет минимальный правильный период . Так, к примеру, в качестве период а непрерывной функции может быть безусловно всякое число, а значит, у нее может и не быть наименьшего позитивного период а. Встречаются также и непостоянные период ические функции , у которых нет наименьшего правильного период а. Впрочем в большинстве случаев минимальный правильный период у период ических функций все же есть.

2. Минимальный период синуса равен 2?. Разглядите подтверждение этого на примере функции y=sin(x). Пускай T будет произвольным период ом синуса, в таком случае sin(a+T)=sin(a) при любом значении a. Если a=?/2, получается, что sin(T+?/2)=sin(?/2)=1. Впрочем sin(x)=1 лишь в том случае, когда x=?/2+2?n, где n представляет собой целое число. Отсель следует, что T=2?n, а значит, наименьшим позитивным значением 2?n является 2?.

3. Минимальный правильный период косинуса тоже равен 2?. Разглядите подтверждение этого на примере функции y=cos(x). Если T будет произвольным период ом косинуса, то cos(a+T)=cos(a). В том случае если a=0, cos(T)=cos(0)=1. Ввиду этого, наименьшим позитивным значением T, при котором cos(x)=1, есть 2?.

4. Рассматривая тот факт, что 2? – период синуса и косинуса, это же значение будет и период ом котангенса, а также тангенса, впрочем не минимальным, от того что, как знаменито, минимальный правильный период тангенса и котангенса равен ?. Удостовериться в этом сумеете, разглядев дальнейший пример: точки, соответствующие числам (х) и (х+?) на тригонометрической окружности, имеют диаметрально противоположное расположение. Расстояние от точки (х) до точки (х+2?) соответствует половине окружности. По определению тангенса и котангенса tg(x+?)=tgx, а ctg(x+?)=ctgx, а значит, минимальный правильный период котангенса и тангенса равен ?.

Совет 2: Как находить период функции

Периодической функцией именуется функция, повторяющая свои значения через какой-то ненулевой период. Периодом функции именуется число, при добавление которого к доводу функции значение функции не меняется.

Вам понадобится

  • Знания по элементарной математике и началам обзора.

Инструкция

1. Обозначим период функции f(x) через число К. Наша задача обнаружить это значение К. Для этого представим, что функция f(x), пользуясь определением периодической функции, приравняем f(x+K)=f(x).

2. Решаем полученное уравнение касательно незнакомой K, так, как словно x – константа. В зависимости от значения К получится несколько вариантов.

3. Если K>0 – то это и есть период вашей функции.Если K=0 – то функция f(x) не является периодической.Если решение уравнения f(x+K)=f(x) не существует ни при каком K не равном нулю, то такая функция именуется апериодической и у неё тоже нет периода.

Видео по теме

Обратите внимание!
Все тригонометрические функции являются периодическими, а все полиномиальные со степенью огромнее 2 – апериодическими.

Полезный совет
Периодом функции, состоящей из 2-х периодический функций, является Наименьшее всеобщее кратное периодов этих функций.

Совет 3: Как обнаружить период функции

Если рассматривать точки на окружности, то точки x, x + 2π, x + 4π и т.д. совпадают друг с ином. Таким образом, тригонометрические функции на прямой периодически повторяют свое значение. Если знаменит период функции , дозволено возвести функцию на этом периоде и повторить ее на других.

Инструкция

1. Период – это число T, такое что f(x) = f(x+T). Дабы обнаружить период, решают соответствующее уравнение, подставляя в качестве довода x и x+T. При этом пользуются теснее вестимыми периодами для функций. Для функций синуса и косинуса период составляет 2π, а для тангенса и котангенса – π.

2. Пускай дана функция f(x) = sin^2(10x). Разглядите выражение sin^2(10x) = sin^2(10(x+T)). Воспользуйтесь формулой для понижения степени: sin^2(x) = (1 – cos 2x)/2. Тогда получите 1 – cos 20x = 1 – cos 20(x+T) либо cos 20x = cos (20x+20T). Зная, что период косинуса равен 2π, 20T = 2&#960. Значит, T = π/10. Т – минимальный правильный период, а функция будет повторяться и через 2Т, и через 3Т, и в иную сторону по оси: -T, -2T и т.д.

Полезный совет
Пользуйтесь формулами для понижения степени функции. Если вам теснее знамениты периоды каких-нибудь функций, пробуйте свести имеющуюся функцию к знаменитым.

Совет 4: Как обнаружить минимальный период функции

Функция, значения которой повторяются через определенное число, именуется периодической . То есть сколько бы периодов вы ни прибавили к значению х, функция будет равна одному и тому же числу. Всякое изыскание периодических функций начинается с поиска наименьшего периода, дабы не исполнять лишнюю работу: довольно исследовать все свойства на отрезке, равном периоду.

Инструкция

1. Воспользуйтесь определением периодической функции . Все значения х в функции замените на (х+Т), где Т – минимальный период функции . Решите полученное уравнение, считая Т незнакомым числом.

2. В итоге вы получите некое тождество, из него испробуйте подобрать наименьший период. Скажем, если получилось равенство sin(2T)=0,5, следственно, 2Т=П/6, то есть Т=П/12.

3. Если равенство получается правильным только при Т=0 либо параметр Т зависит от х (скажем, получилось равенство 2Т=х), делайте итог о том, что функция не периодична.

4. Для того дабы узнать минимальный период функции , содержащей лишь одно тригонометрическое выражение, воспользуйтесь правилом. Если в выражении стоит sin либо cos, периодом для функции будет 2П, а для функций tg, ctg ставьте минимальный период П. Учтите при этом, что функция не должна быть возведена в какую-нибудь степень, а переменная под знаком функции не должна быть умножена на число, хорошее от 1.

5. Если cos либо sin внутри функции построены в четную степень, уменьшите период 2П в два раза. Графически вы можете увидеть это так: график функции , расположенный ниже оси ох, симметрично отразится вверх, следственно функция будет повторяться в два раза почаще.

6. Дабы обнаружить минимальный период функции при том, что угол х умножен на какое либо число, действуете так: определите типовой период этой функции (скажем, для cos это 2П). После этого поделите его на множитель перед переменной. Это и будет желанный минимальный период. Уменьшение периода отменно видно на графике: он сжимается ровно во столько раз, на сколько умножен угол под знаком тригонометрической функции .

7. Обратите внимание, если перед х стоит дробное число поменьше 1, период возрастает, то есть график, наоборот, растягивается.

8. Если в вашем выражении две периодические функции умножены друг на друга, обнаружьте минимальный период для всякой по отдельности. После этого определите минимальный всеобщий множитель для них. Скажем, для периодов П и 2/3П минимальный всеобщий множитель будет 3П (он делится без остатка как на П, так и на 2/3П).

Совет 5: Как обнаружить среднюю зарплату

Расчет размера средней заработной платы работников нужен для начисления пособий по временной нетрудоспособности, оплаты командировок. Средний заработок экспертов исчисляется, исходя из реально отработанного времени, и зависит от оклада, надбавок, премий, указанных в штатном расписании.

Вам понадобится

  • – штатное расписание;
  • – калькулятор;
  • – право;
  • – производственный календарь;
  • – табель учета рабочего времени либо акт исполненных работ.

Инструкция

1. Для того дабы сделать расчет средней заработной платы работника, вначале определите период, за тот, что нужно ее исчислить. Как водится, таким периодом выступает 12 календарных месяцев. Но если работник трудится на предприятии менее года, к примеру, 10 месяцев, то вам необходимо обнаружить средний заработок за время, которое эксперт исполняет свою трудовую функцию.

2. Сейчас определите сумму заработной платы, которая была реально начислена ему за расчетный период. Для этого используйте расчетные ведомости, по которым работнику выдавались все положенные ему выплаты. Если немыслимо воспользоваться этими документами, то месячный оклад, премии, надбавки умножьте на 12 (либо то число месяцев, которое работник трудится на предприятии, если он оформлен в компании менее года).

3. Рассчитайте среднедневной заработок. Для этого сумму заработной платы за расчетный период поделите на среднее число дней в месяце (в текущее время оно составляет 29,4). Полученный итог поделите на 12.

4. После этого определите число реально отработанного времени. Для этого используйте табель учета рабочего времени. Данный документ должен заполнять табельщик, кадровый служащий либо другой работник, у которого это прописано в должностных обязанностях.

5. Число реально отработанного времени умножьте на среднедневной заработок. Полученная сумма является средней заработной платой эксперта за год. Итог поделите на 12. Это будет среднемесячным заработком. Такой расчет используется для работников, у которых начисление заработной платы зависит от реально отработанного времени.

6. Когда работнику установлена сдельная оплата труда, то тарифную ставку (указанную в штатном расписании и определенную трудовым договором) умножьте на число произведенных изделий (используйте акт исполненных работ либо иной документ, в котором это фиксируется).

Обратите внимание!
Не путайте функции y=cos(x) и y=sin(x) – имея идентичный период, эти функции изображаются по-различному.

Полезный совет
Для большей наглядности изобразите тригонометрическую функцию, у которой рассчитывается минимальный правильный период.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: