Как найти моду по статистике

Мода в статистике

В статистике есть целый набор показателей, которые характеризуют центральную тенденцию. Выбор того или иного индикатора в основном зависит от характера данных, целей расчетов и его свойств.

Что подразумевается под характером данных? Прежде всего, мы говорим о количественных данных, которые выражены в числах. Но набор числовых данных может иметь разное распределение. Под распределением понимаются частоты отдельных значений. К примеру, в классе из 23 человек 2 школьника написали контрольную работу на двойку, 5 – на тройку, 10 – на четверку и 6 – на пятерку. Это и есть распределение оценок. Распределение очень наглядно можно представить с помощью специальной диаграммы – гистограммы. Для данного примера получится следующая гистограмма.

Во многих случаях количество уникальных значений намного больше, а распределение похоже на нормальное. Ниже приведена примерная иллюстрация нормального распределения случайных чисел.

Итак, центральная тенденция. Если частоты анализируемых значений распределены по нормальному закону, то есть симметрично вокруг некоторого центра, то центральная тенденция определяется вполне однозначно – это есть тот самый центр, и математически он соответствует средней арифметической.

Как нетрудно заметить, в этом же центре находится и максимальная частота значений. То есть при нормальном распределении центральная тенденция есть не только средняя арифметическая, но и максимальная частота, которая в статистике называется модой или модальным значением.

На диаграмме оба значения центральной тенденции совпадают и равны 10.

Но такое распределение встречается далеко не всегда, а при малом числе данных – совсем редко. Чаще бывает так, что частоты распределяются асимметрично. Тогда мода и среднее арифметическое не будут совпадать.

На рисунке выше среднее арифметическое по-прежнему составляет 10, а вот мода уже равна 9. Что в таком случае считать значением центральной тенденции? Ответ зависит от поставленных целей анализа. Если интересует уровень, сумма отклонений от которого равна нулю со всеми вытекающим отсюда свойствами и последствиями, то это средняя арифметическая. Если нужно максимально частое значение, то это мода.

Итак, зачем нужна мода? Приведу пару примеров. Экономист планово-экономического отдела обувной фабрики интересуется, какой размер обуви пользуется наибольшим спросом. Средний размер обуви, скорее всего, здесь не подойдет, тем более, что число может получится дробным. А вот мода – как раз нужный показатель.

Расчет моды

Теперь посмотрим, как рассчитать моду. Мода – это то значение в анализируемой совокупности данных, которое встречается чаще других, поэтому нужно посмотреть на частоты значений и отыскать максимальное из них. Например, в наборе данных 3, 4, 6, 7, 3, 5, 3, 4 модой будет значение 3 – повторяется чаще остальных. Это в дискретном ряду, и здесь все просто. Если данных много, то моду легче всего найти с помощью соответствующей гистограммы. Бывает так, что совокупность данных имеет бимодальное распределение.

Без диаграммы очень трудно понять, что в данных не один, а два центра. К примеру, на президентских выборах предпочтения сельских и городских жителей могут отличаться. Поэтому распределение доли отданных голосов за конкретного кандидата может быть «двугорбым». Первый «горб» – выбор городского населения, второй – сельского.

Немного сложнее с интервальными данными, когда вместо конкретных значений имеются интервалы. В этом случае говорят о модальном интервале (при анализе доходов населения, например), то есть интервале, частота которого максимальна относительно других интервалов. Однако и здесь можно отыскать конкретное модальное значение, хотя оно будет условным и примерным, так как нет точных исходных данных. Представим, что есть следующая таблица с распределением цен.

Для наглядности изобразим соответствующую диаграмму.

Требуется найти модальное значение цены.

Вначале нужно определить модальный интервал, который соответствует интервалу с наибольшей частотой. Найти его так же легко, как и моду в дискретном ряду. В нашем примере это третий интервал с ценой от 301 до 400 руб. На графике – самый высокий столбец. Теперь нужно определить конкретное значение цены, которое соответствует максимальному количеству. Точно и по факту сделать это невозможно, так как нет индивидуальных значений частот для каждой цены. Поэтому делается допущение о том, что интервалы выше и ниже модального в зависимости от своей частоты имеют разные вес и как бы перетягивают моду в свою сторону. Если частота интервала следующего за модальным больше, чем частота интервала перед модальным, то мода будет правее середины модального интервала и наоборот. Давайте еще раз посмотрим на рисунок, чтобы понять формулу, которую я напишу чуть ниже.

На рисунке отчетливо видно, что соотношение высоты столбцов, расположенных слева и справа от модального определяет близость моды к левому или правому краю модального интервала. Задача по расчету модального значения состоит в том, чтобы найти точку пересечения линий, соединяющих модальный столбец с соседними (как показано на рисунке пунктирными линиями) и нахождении соответствующего значения признака (в нашем примере цены). Зная основы геометрии (7-й класс), по данному рисунку нетрудно вывести формулу расчета моды в интервальном ряду.

Формула моды имеет следующий вид.

x – значение начала модального интервала,

h – размер модального интервала,

fМо – частота модального интервала,

fМо-1 – частота интервала, находящего перед модальным,

fМо1 – частота интервала, находящего после модального.

Второе слагаемое формулы моды соответствует длине красной линии на рисунке выше.

Рассчитаем моду для нашего примера.

Таким образом, мода интервального ряда представляет собой сумму, состоящую из значения начального уровня модального интервала и отрезка, который определяется соотношением частот ближайших интервалов от модального.

Расчет моды в Excel

В настоящее время большинство вычислений делается в MS Excel, где для расчета моды также предусмотрена специальная функция. В Excel 2013 я таких нашел ажно 3 штуки.

МОДА – пережиток старых изданий Excel. Функция оставлена для совмещения со старыми версиями.

МОДА.ОДН – рассчитывает моду по заданным значениям. Здесь все просто. Вставили функцию, указали диапазон данных и «Ок».

МОДА.НСК – позволяет рассчитать сразу несколько модальных значений (одинаковых максимальных частот) для одного ряда данных, если они есть. Функцию нужно вводить как формулу массива, перед этим выделив количество ячеек равное количеству требуемых модальных значений. Иногда действительно модальных значений может быть несколько. Однако для этих целей предварительно лучше посмотреть на диаграмму распределения.

Моду для интервальных данных одной функцией в Excel рассчитать нельзя. То есть такая функция в готовом виде не предусмотрена. Придется прописывать вручную.

8.4. МОДА и МЕДИАНА (структурные средние)

Мода и медиана наиболее часто используемые в экономической практике структурные средние.

Мода – это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.

В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту.

Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

Читайте также  Как найти фотошоп в компьютере

где х о – начальная (нижняя) граница модального интервала;

h – величина интервала;

fМо – частота модального интервала;

fМо-1 – частота интервала, предшествующая модальному;

fМо+1 – частота интервала следующая за модальным.

Медианой называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле:

(8.17 – формула Медианы)

где хо – нижняя граница медианного интервала;

NМе – порядковый номер медианы (Σf/2);

S Me-1 – накопленная частота до медианного интервала;

fМе – частота медианного интервала.

Пример вычисления Моды.

Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4 – Распределение семей города N по размеру среднедушевого дохода в январе 2018 г. руб.(цифры условные)

Пример вычисления Моды . Найдем моду по формуле (8.16) см. обозначения в таблице, а h = 8000-7000=1000, т.е. получаем:

Пример вычисления Медианы интервального вариационного ряда. Рассчитаем медиану по формуле (8.17):

1) сначала находим порядковый номер медианы: NМе = Σfi/2= 5000.

2) по накопленным частотам в соответствии с номером медианы определяем, что 5000 находится в интервале (7000 – 8000), далее значение медианы определим по формуле (8.17):

Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – что половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.

Пример .СРЕДНИЙ, МЕДИАННЫЙ И МОДАЛЬНЫЙ УРОВЕНЬ ДЕНЕЖНЫХ ДОХОДОВ НАСЕЛЕНИЯ ЦЕЛОМ ПО РОССИИ И ПО СУБЪЕКТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 год см. по ссылке. Источник: оценка на основании данных выборочного обследования бюджетов домашних хозяйств и макроэкономического показателя денежных доходов населения

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию.

Если М о о следует сделать вы­вод о левосторонней асимметрии ряда.

Средние величины (арифметическая, гармоническая, геометрическая, квадратическая) см. по ссылке

Задания по статистике по структурным средним

К структурным средним относятся медиана и мода.

Задача №1 . Нахождение моды и медианы для интервального ряда

Рассчитать моду по данным таблицы. Решение приведем ниже. Сначала выберем модальный интервал, максимальная частота в нашем случае равна 10. Таким образом, получаем:

Группы предприятий по стоимости ОПФ, у.е.

1) По максимальной частоте найдем модальный интервал: Fmax =10 → I = 18-20

2) По соответствующей формуле (формулы моды и медианы приведены ниже)

Мода =18+2(10-6)/(10-6)(10-4)=18,33 млн. руб. – наиболее часто встречающаяся стоимость ОПФ среди 25 предприятий.

Вычислим медиану по приведенным исходным данным.

Как найти медиану? В данной задачи нам даны интервалы.

1) Найдем медианный интервал по накопленной частоте. Нужная накопленная частота определяется путем суммирования частот f до тех пор, пока очередная накопленная частота впервые не превысит половину совокупности n +1/2 или n / 2 .

Для нечетного ряда (25+1)/2= 13→ S = 18 →18-20- медианный интервал.

2) По соответствующей формуле (формулы моды и медианы приведены ниже)

Медиана Ме =18+2[(25+1)/2 — 8/10]=18,9 млн.руб. Из 25 малых предприятий региона 12 пр. имеют стоимость ОПФ менее 18 млн.руб., а 12 пр. более.

Задача №2. Нахождение моды и медианы для дискретного ряда.

тарифный разряд, Xi

Распределение рабочих 5 участков по их квалификации (тарифному разряду)

Найти моду по приведенным данным .

По максимальной частоте найдем соответствующую группу и варианту: f max=8 → Мода=4 разряд. Наиболее часто встречающийся разряд рабочих 4.

Определить медиану по данным таблицы.

Как рассчитать медиану? Прежде всего найдем медианный интервал по накопленной частоте. Нужная накопленную частоту. Накопленная частота определяется путем суммирования частот f до тех пор, пока очередная накопленная частота впервые не превысит половину совокупности n +1/2 или n /2.

Для четного ряда 20/2= 10→ S = 14 → Ме =4 разряд. Половина всех рабочих имеет тарифный разряд меньше 4, другая половина больше 4.

Теория для решения данных задач. Формулы для расчета моды и медианы

Модой в статистике называется величины признака (варианта), которая чаще всего встречается в данной совокупности.

Медианой в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам. Обозначают медиану символом.

Распределительные средние – мода и медиана, их сущность и способы исчисления.

Данные показатели относятся к группе распределительных средних и используются для формирования обобщающей характеристики величины варьирующего признака.

Мода – это наиболее часто встречающееся значение варьирующего признака в вариационном ряду. Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие. Для дискретного ряда (ряд, в котором значение варьирующего признака представлены отдельными числовыми показателями) модой является значение варьирующего признака обладающего наибольшей частотой. Для интервального ряда сначала определяется модальный интервал (т.е. содержащий моду), в случае интервального распределения с равными интервалами определяется по наибольшей частоте; с неравными интервалами – по наибольшей плотности, а определение моды требует проведения расчетов на основе следующих формул:

где: — нижняя граница модального интервала;

— величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным;

Медиана (Ме) — это значение варьирующего признака, приходящееся на середину ряда, расположенного в порядке возрастания или убывания числовых значений признака, т.е. величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:

Для определения медианы в дискретном ряду при наличии частот, сначала исчисляется полусумма частот, а затем определяется какое значение варьирующего признака ей соответствует. При исчислении медианы интервального ряда сначала определяются медианы интервалов, а затем определяется какое значение варьирующего признака соответствует данной частоте. Для определения величины медианы используется формула:

где: — нижняя граница медианного интервала;

— величина медианного интервала;

— накопленная частота интервала, предшествующего медианному;

— частота медианного интервала;

Медианный интервал не обязательно совпадает с модальным.

Моду и медиану в интервальном ряду распределения можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который в данном случае является модальным. Затем правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс.

Структурные характеристики вариационного ряда распределения

8.1. Мода

Мода (Мо) — это наиболее часто встречающееся значение признака, или иначе говоря, значение варианты с наибольшей частотой. В дискретных и интервальных рядах моду рассчитывают по-разному.

8.1.1. Определение моды в дискретных вариационных рядах

В дискретных вариационных рядах для определения моды не требуется специальных вычислений: значение признака, которому соответствует наибольшая частота, и будет значением моды.

Читайте также  Какие есть климатические пояса

Пример 8.1. По представленным ниже результатам проведения контрольной работы по статистике определим моду.

Здесь наибольшая частота — 10, она принадлежит варианте со значением 3, значит, Мо = 3. Таким образом, самой распространенной оценкой, полученной студентами за контрольную работу, была «тройка».

8.1.2. Определение моды в интервальных вариационных рядах с равными интервалами

Для определения моды в интервальных вариационных рядах с равными интервалами сначала находят модальный интервал, которым является интервал с наибольшей частотой, а затем ведут расчет по формуле

где хМо — нижняя граница модального интервала;

d — величина интервала;

fMo — частота модального интервала;

fMo — 1 — частота интервала, предшествующего модальному;

fMo + 1 — частота интервала, следующего за модальным.

Пример 8.2. Имеются данные по группе банков.

Таблица 8.1.
Сумма выданных кредитов, млн ден. ед. Количество банков
До 40 8
40-60 15
60-80 21
80-100 12
100-120 9
120-140 7
140 и выше 4
Итого 77

Определим модальный размер выданных кредитов:

  1. модальным является интервал 60-80, так как ему соответствует наибольшая частота (21);
  2. нижняя граница модального интервала xМо = 60; величина интервала d = 20 (80 — 60 = 20);
  3. частота модального интервала fМо = 21; частота интервала, предшествующего модальному, fМо — 1 = 15; частота интервала, следующего за модальным, fМо + 1 = 12.

Подставив в формулу соответствующие величины, получим

Определить модальное значение признака можно и по графику. Для этого в случае дискретных вариационных рядов строится полигон распределения. Напомним, что у него на оси абсцисс помещаются значения признака (варианты), а на оси ординат — соответствующие им частоты. Значение абсциссы, соответствующее наибольшей вершине полигона, будет значением моды.

Пример 8.3. По результатам проведения контрольной работы по статистике, приведенным в примере 8.1, определим моду графическим способом.

Для этого построим полигон распределения и найдем абсциссу его вершины (рис. 8.1).

Если имеется интервальный вариационный ряд с равными интервалами, то для определения моды строится гистограмма, у которой на оси абсцисс находятся значения границ интервалов, а на оси ординат — соответствующие интервалам частоты. На гистограмме модальный интервал будет иметь наибольшую высоту столбца. Затем надо провести линии, соединяющие вершины модального столбца с прилегающими вершинами соседних столбцов. Для нахождения значения моды из точки пересечения проведенных линий на ось абсцисс опускают перпендикуляр. Абсцисса точки пересечения будет значением моды. Продемонстрируем это на примере.

Пример 8.4. По данным о распределении банков по сумме выданных кредитов, приведенным в примере 8.2, определим моду графическим способом (рис. 8.2).

Вариационный ряд может содержать несколько модальных значений. Чаще всего это происходит, когда в один ряд объединяют разнородные единицы наблюдения, которые желательно разделить на подгруппы и анализировать по отдельности. Вариационный ряд, имеющий одну моду, называется унимодальным, две — бимодальным, три и более — мультимодальным.

Как найти моду по статистике

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4 .

Расчёт структурных характеристик вариационного ряда распределения.

— область применения и методику расчёта структурных средних величин;

— исчислять структурные средние величины;

— формулировать вывод по полученным результатам.

В статистике исчисляются мода и медиана, которые относятся к структурным средним, так как их величина зависит от строения статистической совокупности.

Модой называется значение признака (варианта), чаще всеговстречающееся в изучаемой совокупности. В дискретном ряду распределения модой будет варианта с наибольшей частотой.

Например : Распределение проданной женской обуви по размерам характеризуется следующим образом:

Количество проданных пар

В этом ряду распределения модой является 37 размер, т.е. Мо=37 размер.

Для интервального ряда распределения мода определяется по формуле:

где Х Mo — нижняя граница модального интервала;

hMo — величина модального интервала;

fMo – частота модального интервала;

предшествующего модальному и следующего за ним.

Например : Распределение рабочих по стажу работы характеризуется следующими данными.

Стаж работы, лет

Число рабочих, чел.

Определить моду интервального ряда распределения.

Мода интервального ряда составляет

Мода всегда бывает несколько неопределённой, т.к. она зависит от величины групп и точного положения границ групп. Мода широко применяется в коммерческой практике при изучении покупательского спроса, при регистрации цен и т.п.

Медианой в статистике называется варианта, расположенная в середине упорядоченного ряда данных, и которая делит статистическую совокупность на две равные части так, что у одной половины значения меньше медианы, а у другой половины – больше её. Для определения медианы необходимо построить ранжированный ряд, т.е. ряд в порядке возрастания или убывания индивидуальных значений признака.

В дискретном упорядоченном ряду с нечётным числом членов медианой будет варианта, расположенная в центре ряда.

Например : Стаж пяти рабочих составил 2, 4, 7, 9 и 10 лет. В таком ряду медиана-7 лет, т.е. Ме=7 лет

Если дискретный упорядоченный ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух смежных вариант, стоящих в центре ряда.

Например : Стаж работы шести рабочих составил 1, 3, 4, 5, 10 и 11лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 4 и 5. Средняя арифметическая из этих значений и будет медианой ряда

Чтобы определить медиану для сгруппированных данных, необходимо считать накопленные частоты.

Например: По имеющимся данным определим медиану размера обуви

Количество проданных пар

Сумма накопленных частот

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы частот, превышающей половину суммы частот ряда. В нашем примере сумма частот составила 300, её половина – 150. Накопленная сумма частот получилась равной 169. Варианта, соответствующая этой сумме, т.е. 37 и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине суммы частот ряда, то медиана определяется как средняя арифметическая этой варианты и последующей.

Например : По имеющимся данным определим медиану заработной платы рабочих

Месячная заработная плата, тыс .р уб.

Число рабочих, чел.

Сумма накопленных частот

Медиана будет равна:

Медиана интервального вариационного ряда распределения определяется по формуле:

Где ХМе – нижняя граница медианного интервала;

hMe – величина медианного интервала;

∑ f — сумма частот ряда;

f Ме – частота медианного интервала;

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Группы предприятий по численности ППП, чел.

Сумма накопленных частот

Определим, прежде всего, медианный интервал. В данном примере сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу 400-500.Это и есть медианный интервал, т.е. интервал, в котором находится медиана ряда. Определим её значение

Если же сумма накопленных частот против одного из интервалов равна точно половине суммы частот ряда, то медиана определяется по формуле:

где n – число единиц в совокупности.

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Читайте также  Как найти сигму

Группы предприятий по численности ППП, чел.

Сумма накопленных частот

чел

Моду и медиану в интервальном ряду можно определить графически:

моду в дискретных рядах — по полигону распределения, моду в интервальных рядах — по гистограмме распределения, а медиану — по кумуляте .

Мода интервального ряда распределения определяется по гистограмме распределения определяют следующим образом. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

Медиана рассчитывается по кумуляте . Для её определения из точки на шкале накопленных частот ( частостей ), соответствующей 50%, проводится прямая , параллельная оси абсцисс, до пересечения с кумулятой . Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Кроме моды и медианы в вариантных рядах могут быть определены и другие структурные характеристики – квантили. Квантили предназначены для более глубокого изучения структуры ряда распределения.

Квантиль – это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности. Различают следующие виды квантилей:

квартили – значения признака, делящие упорядоченную совокупность на четыре равные части;

децили – значения признака, делящие упорядоченную совокупность на десять равных частей;

перцентели — значения признака, делящие упорядоченную совокупность на сто равных частей.

Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значение признака , мода, медиана . При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:

— для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую. Такие процессы характеризуются симметричными распределениями, в которых ;

— для неустойчивых процессов положение центра распределения характеризуется с помощью Mo или Me . Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку занимает положение между средней арифметической и модой.

Среднее арифметическое, мода и медиана

Предмет, цели и методы математической статистики

Начиная с XVIII века, в общем направлении статистических исследований начинает активно формироваться математическая статистика.

Математическая статистика – раздел математики, разрабатывающий методы регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений.

В зависимости от предмета исследований математическая статистика делится на:

  • статистику чисел;
  • многомерный статистический анализ;
  • анализ функций (процессов) и временных рядов;
  • статистику объектов с нечисловыми характеристиками.

В зависимости от цели и методов исследований математическая статистика делится на: описательную статистику; теорию оценивания; теорию проверки гипотез.

1. Наглядное представление в форме графиков и таблиц.

2. Количественное описание с помощью статистических показателей.

1. Параметрические методы (наименьших квадратов, максимального правдоподобия и др.).

2. Непараметрические методы.

1. Последовательный анализ.

2. Статистические критерии.

Метод выборочных исследований

Статистика получила признание в различных областях человеческой деятельности благодаря заметной экономии времени и прочих ресурсов. Её основная идея: не нужно измерять всё, измерьте только часть всего и сделайте предположение об остальном.

«Всё» в статистике называется генеральной совокупностью.

«Часть всего», которую мы тщательно исследуем, называется выборкой.

Метод выборочных исследований – способ определения свойств группы объектов ( генеральной совокупности ) на основании статистического исследования её части ( выборки ).

Например, чтобы оценить средние размеры апельсина, который продаётся в магазине в декабре, необязательно денно и нощно мерить все апельсины во всех ящиках (сколько же для этого нужно времени и людей?!). Достаточно сделать выборку – мерить по одному апельсину из каждого ящика в течение месяца (тут уже и один человек справится).

Статистика предоставляет методику и оценки для того, чтобы правильно провести выборку и на основании знаний о среднем размере апельсина в выборке (выборочной средней) судить о средних размерах всех декабрьских апельсин (генеральной средней).

Средняя арифметическая, простая и взвешенная

Статистическое исследование опирается на собранные данные о каком-то признаке (рост, вес, возраст, доход и т.п.).

Варианта – полученное эмпирическое значение признака.

Вариационный ряд – совокупность собранных вариант.

Пусть мы сделали выборку, провели N измерений и получили x_1,x_2,…,x_N вариант.

Вариационный ряд, состоящий из отдельных вариант, называют дискретным .

Чтобы найти выборочную среднюю дискретного вариационного ряда, нужно вычислить среднюю арифметическую простую :

Знак Σ означает «сумма», i — это индекс полученных вариант, который пробегает все значения, от 1 до N.

На протяжении четверти школьник получил такие оценки по алгебре: 5,4,3,5,4,4,5,4,3,5,5,4,3,5,4,4. Найдите среднюю оценку за четверть.

Считаем среднюю арифметическую простую:

Нетрудно заметить, что оценки повторяются, и вычисления можно упростить, если вместо сложения одинаковых оценок использовать умножение оценок на их количество.

Чтобы найти выборочную среднюю при повторяющихся вариантах, удобно вычислять среднюю арифметическую взвешенную:

$$ x_ = frac<1> sum_^K x_i n_i , N = sum_^K n_i , i = overline <1,K>$$

где K – количество групп с повторяющимися вариантами, $x_i$ — значение варианты в -й группе, $n_i$ – частота варианты $x_i$.

Рассматриваем тот же ряд оценок: 5,4,3,5,4,4,5,4,3,5,5,4,3,5,4,4 и составляем таблицу:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: