Как найти массу куба

Как найти массу куба

Задача № 1. Найдите плотность молока, если 206 г молока занимают объем 200 см 3 ?

Задача № 2. Определите объем кирпича, если его масса 5 кг?

Задача № 3. Определите массу стальной детали объёмом 120 см 3

Задача № 4. Размеры двух прямоугольных плиток одинаковы. Какая из них имеет большую массу, если одна плитка чугунная, другая — стальная?

Решение: Из таблицы плотности веществ (см. в конце страницы) определим, что плотность чугуна (ρ2 = 7000 кг/м 3 ) меньше плотности стали (ρ1 = 7800 кг/м 3 ). Следовательно, в единице объема чугуна содержится меньшая масса, чем в единице объема стали, так как чем меньше плотность вещества, тем меньше его масса, если объемы тел одинаковы.

Задача № 5. Определите плотность мела, если масса его куска объемом 20 см 3 равна 48 г. Выразите эту плотность в кг/м 3 и в г/см 3 .

Ответ: Плотность мела 2,4 г/см 3 , или 2400 кг/м 3 .

Задача № 6. Какова масса дубовой балки длиной 5 м и площадью поперечного сечения 0,04 м 2 ?

ОТВЕТ: 160 кг.

РЕШЕНИЕ. Из формулы для плотности получаем m = p • V. С учетом того, что объем балки V = S • l , получаем: m = p • S • l.

Вычисляем: m = 800 кг/м 3 • 0,04 м 2 • 5 м = 160 кг.

Задача № 7. Брусок, масса которого 21,6 г, имеет размеры 4 х 2,5 х 0,8 см. Определить, из какого вещества он сделан.

ОТВЕТ: Брусок сделан из алюминия.

Задача № 8 (повышенной сложности). Полый медный куб с длиной ребра а = 6 см имеет массу m = 810 г. Какова толщина стенок куба?

ОТВЕТ: 5 мм.

РЕШЕНИЕ: Объем кубика VK = а 3 = 216 см 3 . Объем стенок VС можно вычислить, зная массу кубика mК и плотность меди р: VС = mК / р = 91 см 3 . Следовательно, объем полости VП = VK — VC = 125 см 3 . Поскольку 125 см 3 = (5 см) 3 , полость является кубом с длиной ребра b = 5 см. Отсюда следует, что толщина стенок куба равна (а — b)/2 = (6 – 5)/2 = 0,5 см.

Задача № 9 (олимпиадный уровень). Масса пробирки с водой составляет 50 г. Масса этой же пробирки, заполненной водой, но с куском металла в ней массой 12 г составляет 60,5 г. Определите плотность металла, помещенного в пробирку.

ОТВЕТ: 8000 кг/м 3

РЕШЕНИЕ: Если бы часть воды из пробирки не вылилась, то в этом случае общая масса пробирки, воды и куска металла в ней была бы равна 50 г + 12 г = 62 г. По условию задачи масса воды в пробирке с куском металла в ней равна 60,5 г. Следовательно, масса воды, вытесненной металлом, равна 1,5 г, т. е. составляет 1/8 массы куска металла. Таким образом, плотность металла в 8 раз больше плотности воды.

Задачи на плотность, массу и объем с решением. Таблица плотности веществ.

Справочный материал для «Задачи на плотность, массу и объем«

Как, зная только массу, рассчитать плотность?

  1. Если объем тела (вещества) неизвестен или не задан явно в условиях задачи, то попытайтесь его измерить, вычислить или узнать, используя косвенные (дополнительные) данные.
  2. Если вещество сыпучее или жидкое, то оно, как правило, находится в емкости, которая обычно имеет стандартный объем. Так, например, объем бочки обычно равен 200 литров, объем ведра – 10 литров, объем стакана – 200 миллилитров (0,2 литра), объем столовой ложки – 20 мл, объем чайной – 5 мл. Об объеме трехлитровых и литровых банок нетрудно догадаться из их названия.
  3. Если жидкость занимает не всю емкость или емкость нестандартная, то перелейте ее в другую тару, объем которой известен.Если подходящей емкости нет, перелейте жидкость с помощью мерной кружки (банки, бутылки). В процессе вычерпывания жидкости просто посчитайте количество таких кружек и умножьте на объем мерной тары.
  4. Если тело имеет простую форму, то вычислите его объем, используя соответствующие геометрические формулы. Так, например, если тело имеет форму прямоугольного параллелепипеда, то его объем будет равен произведению длин его ребер. То есть: Vпар. = a • b • c, где Vпар. – объем прямоугольного параллелепипеда, а a, b, c — значения его длины, ширины и высоты (толщины), соответственно.
  5. Если тело имеет сложную геометрическую форму, то попробуйте (условно!) разбить его на несколько простых частей, найти объем каждой из них отдельно и затем сложить полученные значения.
  6. Если тело невозможно разделить на более простые фигуры (например, статуэтку), то воспользуйтесь методикой Архимеда. Опустите тело в воду и измерьте объем вытесненной жидкости. Если тело не тонет, то «утопите» его с помощью тонкой палочки (проволоки).
  7. Если объем вытесненной телом воды посчитать проблематично, то взвесьте вылившуюся воду, или найдите разность между начальной и оставшейся массой воды. При этом, количество килограммов воды будет равняться количеству литров, количество граммов – количеству миллилитров, а количество тонн – количеству кубометров.

Конспект урока «Задачи на плотность, массу и объем с решением».

Что такое куб: определение, свойства, формулы

В публикации мы рассмотрим определение и основные свойства куба, а также формулы, касающиеся данной геометрической фигуры (расчет площади поверхности, периметра ребер, объема, радиуса описанного/вписанного шара и т.д.).

  • Определение куба
  • Свойства куба
    • Свойство 1
    • Свойство 2
    • Свойство 3
  • Формулы для куба
    • Диагональ
    • Диагональ грани
    • Площадь полной поверхности
    • Периметр ребер
    • Объем
    • Радиус описанного вокруг шара
    • Радиус вписанного шара

Определение куба

Куб – это правильный многогранник, все грани которого являются квадратами.

  • Вершины куба – это точки, являющиеся вершинами его граней.
    Всего их 8: A, B, C, D, A1, B1, C1 и D1.
  • Ребра куба – это стороны его граней.
    Всего их 12: AB, BC, CD, AD, AA1, BB1, CC1, DD1, A1B1, B1C1, C1D1 и A1D1.

Примечание: куб является частным случаем параллелепипеда или призмы.

Свойства куба

Свойство 1

Как следует из определения, все ребра и грани куба равны. Также противоположные грани фигуры попарно параллельны, т.е.:

Свойство 2

Диагонали куба (их всего 4) равны и в точке пересечения делятся пополам.

Свойство 3

Все двугранные углы куба (углы между двумя гранями) равны 90°, т.е. являются прямыми.

Например, на рисунке выше угол между гранями ABCD и AA1B1B является прямым.

Формулы для куба

Примем следующие обозначения, которые будут использоваться далее:

  • a – ребро куба;
  • d – диагональ куба или его грани.

Диагональ

Длина диагонали куба равняется длине его ребра, умноженной на квадратный корень из трех.

Диагональ грани

Диагональ грани куба равна его ребру, умноженному на квадратный корень из двух.

Площадь полной поверхности

Площадь полной поверхности куба равняется шести площадям его грани. В формуле может использоваться длина ребра или диагонали.

Периметр ребер

Периметр куба равен длине его ребра, умноженной на 12. Также может рассчитываться через диагональ.

Объем

Объем куба равен длине его ребра, возведенной в куб.

Радиус описанного вокруг шара

Радиус шара, описанного около куба, равняется половине его диагонали.

Радиус вписанного шара

Радиус вписанного в куб шара равен половине длины его ребра.

Объемы фигур. Объем куба.

Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте).

У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна

ширине и равна высоте, то объем куба равен s 3 ,

где s – длина одного (любого) ребра куба.

Воспользуйтесь онлайн калькулятором для расчета объема куба: объем куба, онлайн расчет.

Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.

Метод 1 из 3: Возведение в куб ребра куба

  • Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы

вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.

Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.

Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза.

Если s — длина ребра куба, то

и, таким образом, вы вычислите объем куба.

Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на

ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть,

другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и

равна высоте, то это процесс можно заменить возведением ребра куба в третью степень.

В нашем примере объем куба равен:

  • К ответу припишите единицы измерения объема. Так как объем – это количественная

характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические

В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических

сантиметрах (или в см 3 ). Итак, объем куба равен 125 см 3 .

Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих

Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м 3 .

Метод 2 из 3: Вычисление объема по площади поверхности

  • В некоторых задачах длина ребра куба не дана, но даны другие величины, с помощью которых вы

можете найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите

ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем

возведите длину ребра куба в третью степень и вычислите объем куба.

Площадь поверхности куба равна 6s 2 ,

где sдлина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так

как у куба 6 равных граней).

Рассмотрим пример. Площадь поверхности куба равна 50 см 2 . Найдите объем куба.

  • Разделите площадь поверхности куба на 6 (так как у куба 6 равных граней, вы получите площадь

одной грани куба). В свою очередь площадь одной грани куба равна s 2 , где s – длина ребра куба.

В нашем примере: 50/6 = 8,33 см 2 (не забывайте, что площадь измеряется в квадратных единицах — см 2 ,

  • Так как площадь одной грани куба равна s 2 , то извлеките квадратный корень из значения площади

одной грани и получите длину ребра куба.

В нашем примере, √8,33 = 2,89 см.

  • Возведите в куб полученное значение, чтобы найти объем куба.

В нашем примере: 2,89 * 2,89 * 2,89 = 2,893 = 24,14 см 3 . К ответу не забудьте приписать кубические

Метод 3 из 3: Вычисление объема по диагонали

  • Разделите диагональ одной из граней куба на √2, чтобы найти длину ребра куба. Таким образом,

если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив

Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба

равна 7/√2 = 4,96 см. Объем куба равен 4,963 = 122,36 см 3 .

Запомните: d 2 = 2s 2 ,

где d — диагональ грани куба, s – ребро куба. Эта формула вытекает из теоремы Пифагора, согласно

которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен

сумме квадратов катетов (в нашем случае ребер), то есть:

d 2 = s 2 + s 2 = 2s 2 .

  • Разделите диагональ куба на √3, чтобы найти длину ребра куба. Таким образом, если в задаче

дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3.

Диагональ куба — отрезок, соединяющий две вершины, симметричные относительно центра куба, равный

(где D — диагональ куба, s – ребро куба).

Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае

диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет –

это ребро, а второй катет – это диагональ грани куба, равная 2s 2 ), то есть

D 2 = s 2 + 2s 2 = 3s 2 .

Рассмотрим пример. Диагональ куба равна 10 м. Найдите объем куба.

Как найти массу куба из стали

Калькулятор массы

Для различных изделий сложной формы и профиля, с наличием прорезей и отверстий очень трудно рассчитать вес, а это очень важный момент – для транспортировки, для расчета монтажных параметров, для конструкторской документации и других целей. Процесс взвешивания также представляет собой сложности, особенно, когда изделия крупногабаритные – например, трубы, валы, турбины, металлические или деревянные конструкции, изделия из бетона и железобетона и т.д., или же вес небольшой детали, но сложной конфигурации.

Но, узнать точную массу таких изделий можно гораздо проще на нашем сайте

Мы предлагаем Вашему вниманию универсальный интерактивный калькулятор массы для самостоятельного расчета массы изделий самой разной формы из материалов цилиндрической или листовой формы. Его особенность в том, что он позволяет узнать вес детали или изделия не только из металлопроката и сплавов, но и любых других материалов: дерева и МДФ, пластиков и полимеров, бумаги, картона, резины, бетона, кирпича. Сделать это можно просто внеся габаритные показатели детали с вычетом размеров отверстий и прорезей, а также, величину коэффициента плотности материала, из которого деталь изготовлена. Точные данные можно найти в представленной рядом таблице.

Масса цилиндрической детали рассчитывается следующим образом:

• В соответствующие поля калькулятора массы внести размерные показатели: диаметр, длину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы, ступени – надо добавить их габариты.
• И третий шаг – вычесть размеры отверстий, выемок, прорезей.
• Результат – точная расчетная масса цилиндрической детали.

Масса детали из листа рассчитывается следующим образом:

• В соответствующие поля калькулятора массы внести размерные показатели: ширину, длину, толщину и справочную плотность материала – калькулятор рассчитает общую массу изделия.
• Второй шаг – если на изделии есть выступы – надо добавить их габариты.
• И третий шаг – вычесть размеры прямоугольных или круглых отверстий.
• Результат – точная расчетная масса детали из листа.

Наш калькулятор массы изделий будет полезен как конструктору, так и для заказчиков, ведь он позволяет очень быстро и почти со 100%-точностью получить необходимые данные относительно веса изделия без сложных математических расчетов и процедуры взвешивания.

Обратите внимание, что по умолчанию в калькуляторе стоит масса марки стали 40 ГОСТ 1050-88.

Как найти массу куба из стали

Формулы, используемые в задачах по физике на плотность, массу и объем.

Название величины

Обозначение

Единицы измерения

Формула

Масса

m = p * V

Объем

V = m / p

Плотность

кг/м 3

p = m / V

Плотность равна отношению массы тела к его объёму. Плотность обозначают греческой буквой ρ (ро).

Физика 7 класс: все формулы и определения КРУПНО на трех страницах

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Найдите плотность молока, если 206 г молока занимают объем 200 см 3 ?

Задача № 2. Определите объем кирпича, если его масса 5 кг?

Задача № 3. Определите массу стальной детали объёмом 120 см 3

Задача № 4. Размеры двух прямоугольных плиток одинаковы. Какая из них имеет большую массу, если одна плитка чугунная, другая — стальная?

Решение: Из таблицы плотности веществ (см. в конце страницы) определим, что плотность чугуна (ρ2 = 7000 кг/м 3 ) меньше плотности стали (ρ1 = 7800 кг/м 3 ). Следовательно, в единице объема чугуна содержится меньшая масса, чем в единице объема стали, так как чем меньше плотность вещества, тем меньше его масса, если объемы тел одинаковы.

Задача № 5. Определите плотность мела, если масса его куска объемом 20 см 3 равна 48 г. Выразите эту плотность в кг/м 3 и в г/см 3 .

Ответ: Плотность мела 2,4 г/см 3 , или 2400 кг/м 3 .

Задача № 6. Какова масса дубовой балки длиной 5 м и площадью поперечного сечения 0,04 м 2 ?

ОТВЕТ: 160 кг.

РЕШЕНИЕ. Из формулы для плотности получаем m = p • V. С учетом того, что объем балки V = S • l , получаем: m = p • S • l.

Вычисляем: m = 800 кг/м 3 • 0,04 м 2 • 5 м = 160 кг.

Задача № 7. Брусок, масса которого 21,6 г, имеет размеры 4 х 2,5 х 0,8 см. Определить, из какого вещества он сделан.

ОТВЕТ: Брусок сделан из алюминия.

Задача № 8 (повышенной сложности). Полый медный куб с длиной ребра а = 6 см имеет массу m = 810 г. Какова толщина стенок куба?

ОТВЕТ: 5 мм.

РЕШЕНИЕ: Объем кубика VK = а 3 = 216 см 3 . Объем стенок VС можно вычислить, зная массу кубика mК и плотность меди р: VС = mК / р = 91 см 3 . Следовательно, объем полости VП = VK — VC = 125 см 3 . Поскольку 125 см 3 = (5 см) 3 , полость является кубом с длиной ребра b = 5 см. Отсюда следует, что толщина стенок куба равна (а — b)/2 = (6 – 5)/2 = 0,5 см.

Задача № 9 (олимпиадный уровень). Масса пробирки с водой составляет 50 г. Масса этой же пробирки, заполненной водой, но с куском металла в ней массой 12 г составляет 60,5 г. Определите плотность металла, помещенного в пробирку.

ОТВЕТ: 8000 кг/м 3

РЕШЕНИЕ: Если бы часть воды из пробирки не вылилась, то в этом случае общая масса пробирки, воды и куска металла в ней была бы равна 50 г + 12 г = 62 г. По условию задачи масса воды в пробирке с куском металла в ней равна 60,5 г. Следовательно, масса воды, вытесненной металлом, равна 1,5 г, т. е. составляет 1/8 массы куска металла. Таким образом, плотность металла в 8 раз больше плотности воды.

Задачи на плотность, массу и объем с решением. Таблица плотности веществ.

Справочный материал для «Задачи на плотность, массу и объем«

Как, зная только массу, рассчитать плотность?

  1. Если объем тела (вещества) неизвестен или не задан явно в условиях задачи, то попытайтесь его измерить, вычислить или узнать, используя косвенные (дополнительные) данные.
  2. Если вещество сыпучее или жидкое, то оно, как правило, находится в емкости, которая обычно имеет стандартный объем. Так, например, объем бочки обычно равен 200 литров, объем ведра – 10 литров, объем стакана – 200 миллилитров (0,2 литра), объем столовой ложки – 20 мл, объем чайной – 5 мл. Об объеме трехлитровых и литровых банок нетрудно догадаться из их названия.
  3. Если жидкость занимает не всю емкость или емкость нестандартная, то перелейте ее в другую тару, объем которой известен.Если подходящей емкости нет, перелейте жидкость с помощью мерной кружки (банки, бутылки). В процессе вычерпывания жидкости просто посчитайте количество таких кружек и умножьте на объем мерной тары.
  4. Если тело имеет простую форму, то вычислите его объем, используя соответствующие геометрические формулы. Так, например, если тело имеет форму прямоугольного параллелепипеда, то его объем будет равен произведению длин его ребер. То есть: Vпар. = a • b • c, где Vпар. – объем прямоугольного параллелепипеда, а a, b, c — значения его длины, ширины и высоты (толщины), соответственно.
  5. Если тело имеет сложную геометрическую форму, то попробуйте (условно!) разбить его на несколько простых частей, найти объем каждой из них отдельно и затем сложить полученные значения.
  6. Если тело невозможно разделить на более простые фигуры (например, статуэтку), то воспользуйтесь методикой Архимеда. Опустите тело в воду и измерьте объем вытесненной жидкости. Если тело не тонет, то «утопите» его с помощью тонкой палочки (проволоки).
  7. Если объем вытесненной телом воды посчитать проблематично, то взвесьте вылившуюся воду, или найдите разность между начальной и оставшейся массой воды. При этом, количество килограммов воды будет равняться количеству литров, количество граммов – количеству миллилитров, а количество тонн – количеству кубометров.

Конспект урока «Задачи на плотность, массу и объем с решением».

Какой вес 1м3 стали

Какой вес 1м3 стали

Что мы хотим узнать сегодня узнать? Сколько весит 1 куб стали, вес 1 м3 стали ? Нет проблем, можно узнать количество килограмм или количество тонн сразу, масса (вес одного кубометра, вес одного куба, вес одного кубического метра, вес 1 м3) указаны в таблице 1. Если кому-то интересно, можно пробежать глазами небольшой текст ниже, прочесть некоторые пояснения. Как измеряется нужное нам количество вещества, материала, жидкости или газа? За исключением тех случаев, когда можно свести расчет нужного количества к подсчету товара, изделий, элементов в штуках (поштучный подсчет), нам проще всего определить нужное количество исходя из объема и веса (массы). В бытовом отношении самой привычной единицей измерения объема для нас является 1 литр. Однако, количество литров, пригодное для бытовых расчетов, не всегда применимый способ определения объема для хозяйственной деятельности. Кроме того, литры в нашей стране так и не стали общепринятой “производственной” и торговой единицей измерения объема. Один кубический метр или в сокращенном варианте – один куб, оказался достаточно удобной и популярной для практического использования единицей объема. Практически все вещества, жидкости, материалы и даже газы мы привыкли измерять в кубометрах. Это действительно удобно. Ведь их стоимость, цены, расценки, нормы расхода, тарифы, договора на поставку почти всегда привязаны к кубическим метрам (кубам), гораздо реже к литрам. Не менее важным для практической деятельности оказывается знание не только объема, но и веса (массы) вещества занимающего этот объем: в данном случае речь идет о том сколько весит 1 куб (1 кубометр, 1 метр кубический, 1 м3). Знание массы и объема, дают нам довольно полное представление о количестве. Посетители сайта, спрашивая сколько весит 1 куб, часто указывают конкретные единицы массы, в которых им хотелось бы узнать ответ на вопрос. Как мы заметили, чаще всего хотят узнать вес 1 куба ( 1 кубометра, 1 кубического метра, 1 м3) в килограммах (кг) или в тоннах (тн). По сути, нужны кг/м3 или тн/м3. Это тесно связанные единицы определяющие количество. В принципе возможен довольно простой самостоятельный пересчет веса (массы) из тонн в килограммы и обратно: из килограммов в тонны. Однако, как показала практика, для большинства посетителей сайта более удобным вариантом было бы сразу узнать сколько килограмм весит 1 куб (1 м3) стали или сколько тонн весит 1 куб (1 м3) стали, без пересчета килограмм в тонны или обратно – количества тонн в килограммы на один метр кубический (один кубометр, один куб, один м3). Поэтому, в таблице 1 мы указали сколько весит 1 куб ( 1 кубометр, 1 метр кубический) в килограммах (кг) и в тоннах (тн). Выбирайте тот столбик таблицы, который вам нужен самостоятельно. Кстати, когда мы спрашиваем сколько весит 1 куб ( 1 м3), мы подразумеваем количество килограмм или количество тонн. Однако, с физической точки зрения нас интересует плотность или удельный вес. Масса единицы объема или количество вещества помещающегося в единице объема – это объемная плотность или удельный вес. В данном случае объемная плотность и удельный вес стали. Плотность и удельный вес в физике принято измерять не в кг/м3 или в тн/м3, а в граммах на кубический сантиметр: гр/см3. Поэтому в таблице 1 удельный вес и плотность (синонимы) указаны в граммах на кубический сантиметр (гр/см3)

Таблица 1. Сколько весит 1 куб стали, вес 1 м3 стали. Объемная плотность и удельный вес в гр/см3. Сколько килограмм в кубе, тонн в 1 кубическом метре, кг в 1 кубометре, тн в 1 м3.

Что такое формула куба?

Итак, для куба формулы для объема и площади поверхности таковы: V = s3 V = s 3 и S = ​​6s2 S = 6s2.

хотя, каков объем показанного куба?

Объем куба Объем = S ^ 3, где S — длина одной стороны.

не менее важно, что такое формула алгебры?

Алгебраическое уравнение, утверждение равенства двух выражений, сформулированное путем применения к набору переменных алгебраических операций, а именно сложения, вычитания, умножения, деления, возведения в степень и извлечения корня. Примеры: x 3 + 1 и (y 4 x 2 + 2xy — y) / (x — 1) = 12).

в противном случае Какие части куба?

В геометрии куб — это трехмерный твердый объект, ограниченный шесть квадратных граней, граней или сторон, по три пересечения в каждой вершине. Куб — единственный правильный шестигранник и одно из пяти Платоновых тел. У него 6 граней, 12 ребер и 8 вершин.

Какая формула цилиндра? Формула объема цилиндра: V = Bh или V = πr2h . Радиус цилиндра 8 см, высота 15 см. … Следовательно, объем цилиндра составляет порядка 3016 кубических сантиметров.

Как определить объем?

В то время как основная формула для площади прямоугольной формы — длина × ширина, основная формула для объема: длина × ширина × высота.

Каков объем куба 2 × 2?

Поскольку длина, ширина и высота куба равны, мы можем сократить этот процесс, просто построив кубик любого из этих измерений. Приступим к нашему примеру. Поскольку длина стороны нашего куба составляет 2 дюйма, мы можем найти объем, умножив 2 x 2 x 2 (или 2 3 ) = 8.

8 — идеальный куб?

Например, 8 — идеальный куб , так как: 3 √8 = 2.

Какая формула a3 b3?

a3 — b3 = (а — б) (a2 + ab + b2).

Каковы четыре правила алгебры?

Основные законы алгебры: ассоциативный, коммутативный и распределительный законы. Они помогают объяснить взаимосвязь между числовыми операциями и способствуют упрощению уравнений или их решению.

Какая формула A² B²?

(A²-B²) = (AB) ² + 2AB.

Как выглядит куб?

Куб выглядит как коробка. У куба шесть плоских граней или поверхностей. … Стороны каждой грани называются ребрами. У куба 12 ребер.

Сколько углов в кубе?

CUBE ICE CUBE DICE Он имеет 6 граней, 12 граней и 8 углов.

Что кубик Рубика делает с вашим мозгом?

Собирать куб на регулярной основе, в частности улучшает навыки когнитивного картирования мозга поскольку клетки мозга остаются активными. Кубик Рубика считается проблемой конфигурации, поэтому, когда вы используете куб на регулярной основе, ваши навыки сопоставления и настройки улучшаются.

Как найти громкость?

В то время как основная формула для площади прямоугольной формы — длина × ширина, основная формула для объема: длина × ширина × высота.

Как найти объем и площадь поверхности?


Формулы площади поверхности:

  1. Объем = (1/3) πr

    2

    h.

  2. Площадь боковой поверхности = πrs = πr√ (r

    2

    + ч

    2

    )

  3. Площадь базовой поверхности = πr

    2

  4. Общая площадь поверхности. = L + B = πrs + πr

    2

    = πr (s + r) = πr (r + √ (r

    2

    + ч

    2

    ))

Что такое TSA цилиндра?

Общая площадь цилиндра

Общая площадь цилиндра равна сумме площадей всех его граней. Общая площадь поверхности с радиусом «r» и высотой «h» равна сумме изогнутой площади и круглых площадей цилиндра. TSA = 2π × r × h + 2πr 2 = 2πr (h + r) Квадратные единицы.

Какие 3 способа найти объем?


Различные способы найти объем

  1. Найдите объем по пространству. Все физические объекты занимают пространство, и вы можете определить объем некоторых из них, измерив их физические размеры. …
  2. Найдите объем по плотности и массе. Плотность определяется как масса объекта на заданную единицу объема. …
  3. Найдите объем по смещению.

Что такое объем квадрата?

Объем квадратного ящика равен кубу длины стороны квадратного ящика. Формула объема: V = s 3 , где «s» — длина стороны квадратного прямоугольника.

Какой объем 15мм?

Ответ проверен экспертом

Таким образом, объем куба со стороной 15 мм равен 3375 кубических дюймов.

Что такое квадрат объема?

Поскольку каждая сторона квадрата одинакова, его можно просто длина одной стороны в кубе. Если у квадрата одна сторона 4 дюйма, объем будет 4 дюйма, умноженный на 4 дюйма, умноженный на 4 дюйма, или 64 кубических дюйма.

400 — идеальный куб?

Поскольку 2 и 5 не встречаются в тройках. ∴ 400 — не идеальный куб.

150 — это кубическое число?

150 — идеальный куб? Число 150 при разложении на простые множители дает 2 × 3 × 5 × 5. Здесь простой множитель 2 не является степенью 3. Следовательно, кубический корень из 150 иррационален, поэтому 150 — не идеальный куб.

Чем не идеальный куб?

Кубики и кубические корни | Упражнение 7.1.

128 не идеальный куб. Следовательно, 1000 — это куб 10. Здесь 100 не может быть сгруппировано в тройки равных множителей. ∴ 100 — не идеальный куб.

Как найти массу, зная плотность и объем

Плотность тела — зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m — его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Определение массы и плотности жидкостей

Определение массы жидкостей, кроме непосредственного взвешивании. — с известной погрешностью можно производить объемным методом — с помощью пипеток, бюреток, мерных цилиндров, колб, мензурок и т. п. по формуле:

где m — масса жидкости, г; V — ее объем, см3; р—плотность жидкости, г/см3.

Плотность жидкостей и растворов находят по справочным таблицам или определяют самостоятельно. В лабораторной практике наибольшее распространение получили два метода определения плотности: 1) определение степени погружения денсиметра з жидкость; 2) взвешивание жидкости в сосуде известного объема.

При определении плотности с помощью денсиметр а последний погружают в цилиндр с жидкостью, термостатированной при определенной температуре, обычно при 20 или 15 °С. (рис. 25).

Для измерения температуры жидкости используют термометр с ценой деления не менее 0,5°С: неточность в измерении температуры в 1°С дает ошибку в значении плотности до 0,1%. Шкала денсиметров проградупрозана непосредственно в единицах плотности. Значение плотности жидкости считывают по делению шкалы, находящемуся на одном уровне с мениском жидкости.

Рис. 21. Определение плотности жидкости с помощью денсиметра.

Цена деления таких денсиметров 0,001 г/см3, а весь набор охватывает интервал плотностей от 0,700 до 1,840 г/см3. Иногда удобнее пользоваться приборами, шкала которых проградуирована в единицах концентрации для растворов определенных веществ. Такие приборы принято называть ареометрами.

В тех случаях, когда количество жидкости, находящейся в распоряжении экспериментатора, слишком мало, ее плотность определяют посредством пикнометров— небольших (от 1 до 100 мл) мерных колб.

На каждый находящийся в работе пикнометр должен быть нанесен номер титановым карандашом и заведена индивидуальная карточка, в которую закосят его точную массу (взвешивают чистый сухой пикнометр вместе с пробкой на аналитических весах) и значение «водной константы». Водная константа — эта масса воды в объеме пикнометра, приведенная к массе воды при 4 °С (температура, при которой плотность воды равна 1 г/см3).

С целью определения водной константы нового пикнометра его тщательно моют и заполняют предварительно прокипяченной (для удаления растворенного воздуха) дистиллированной водой немного выше метки.

Наполненный пикнометр выдерживают в течение 20 мин в водяном термостате при 20°С, после чего с помощью капилляра или тонких полосок фильтровальной бумаги отбирают лишнюю воду, доводя ее уровень в шейке пикнометра до метки по нижнему краю мениска. Верхнюю часть шейки пикнометра и шлиф протирают досуха кусочком фильтровальной бумаги, закрывают пикнометр пробкой, тщательно вытирают его снаружи, обсушивают 20—25 мин, после чего взвешивают на аналитических весах. Вычитая из массы пикнометра с водой массу сухого пикнометра получают массу воды в объеме пикнометра при 20 °С. Частное от деления полученного значения на 0,99823 г (масса 1 мл воды при 20 °С) и есть водная константа пикнометра.

При определении плотности какой-либо жидкости проделывают тс же операции, что и при определении водной константы. Для вычисления относительной плотности вещества d массу жидкости в объеме данного пикнометра делят на величину его водной константы

  • Правила работы с весами
  • Определение массы и плотности жидкостей

Расчет массы и объема тела

В повседневной жизни мы часто сталкиваемся с необходимостью рассчитывать массы и объёмы разных тел. Это удобно делать, применяя плотность.

Плотности разных веществ определяются по таблицам, например, плотность воды 1000 кг/м3, плотность этилового спирта 800 кг/м3.

Из определения плотности следует, что масса тела равна произведению его плотности и объёма. Объём же тела равен частному от массы и плотности. Этим пользуются при расчётах:

m = ρ * V; или V = m / p;

гдн m масса данного тела, ρ его плотность, V объём тела.

Как найти массу воды: узнай все

Вода является источником жизни, одним из самых распространённых элементов в природе. Тем не менее, она остаётся самым важным соединением на планете, содержится в каждом живом организме. Кроме того, также она есть и во многих неорганических смесях и препаратах, используемых на производстве. Часто становится актуален вопрос как найти массу воды в определённой ёмкости или предмете, рассчитать её массовую долю.

Массовая доля — отношение массы вещества ко всему весу тела. Например, организм человека на две трети состоит из воды, а огурец — на 90 %. Это значит, что в теле массой 75 килограммов, содержится 50 литров воды. Переходя к вопросу как перевести объём в массу, необходимо разобраться с таким понятием, как плотность вещества. Плотность является скалярной величиной и определяется как отношение веса к объёму.

Также плотность определяется через количество вещества. Для этого необходимо, как рассчитать молярную массу, так и количество вещества. Рассмотрим пример: арбуз на 80% состоит из жидкости, объём арбуза 5 литров. Сколько килограммов воды в данном арбузе. Сначала вычислим объём воды в арбузе. 5 литров * 0,8 (это 80 %) = 4 литра. Теперь остаётся вычислить массу 4-х литров воды. Плотность воды составляет 1 кг/литр, следовательно 4 л * 1 кг/л = 4 кг. Ответ: 4 килограмма.

Зная, как найти массу через плотность, можно вычислить не только массу воды, но и массу других веществ. Достаточно знать плотность необходимого элемента, для этого существуют специальные таблицы плотностей. Решим обратную задачу. Стальной брусок имеет массу 1 кг. Вычислить его объём. Для этого воспользуемся таблицей, установим плотность стали (7,8 кг/литр) . Далее разделим массу на объём, получим 1 (кг) / 7,8 (кг/литр) = 0,8 литра.

Также может возникнуть задача, как найти массу, зная объем неоднородного вещества. Решим такую задачу. Трёхлитровую ёмкость полностью наполнили водой и ацетоном в соотношении 3 к 1. Вычислить массу полученной смеси, массой ёмкости пренебречь. Для начала, выясним какой объём воды и ацетона. Если соотношение было 3 к 1, то необходимо разделить всю ёмкость на 3+1 = 4 части. 3 литра / 4 = 0,5 литра приходится на одну часть.

Следовательно, воды будет 3 * 0,5 = 2,5 литра, а ацетона 1*0,5 = 0,5 литра. Теперь можно приступить к вычислению масс. Плотность воды нам уже известна (1 кг/литр) , плотность ацетона, согласно таблице равна 0,8 кг/литр. Далее вычисляем массу воды: 2,5 литра * 1 кг/литр = 2,5 кг; и ацетона: 0.5 литра * 0,8 кг/литр = 0,6 кг. Сложим полученные результаты: 2,5 + 0,6 = 2.5 килограммов. Задаче решена.

Рассмотрим более сложный пример расчета

Слиток из двух металлов с плотностями ρ1 и ρ2 , имеет массу m и объём V. Определить объём этих металлов в слитке.

Решение. Пусть V1 объём первого металла, V2 объём второго металла. Тогда V1 + V2 = V; V1 = V V2; ρ1V1 + p2V2 = ρ1V1 + ρ2 (V V1) = m

Решив это уравнение относительно V1 , получаем:

Теперь найдём V2:

V2= V — (m ρ2V)/(ρ1 ρ2)

Ответ: объём первого тела равен (m ρ2V)/(ρ1 ρ2), второго V — (m ρ2V)/( ρ1 ρ2). Заметим, однако, что при ρ1 = ρ2 задача не имеет однозначного решения.

Формула зависимости массы от объема и плотности

Для того, чтобы найти плотность жидкости или твердого вещества, существует базовая формула: плотность равна массе, поделенной на объем.

Записывается это так:

И из нее можно вывести еще две формулы.

Формулу для объема тела:

А также формулу для расчета массы:

Как видите, запомнить последнюю очень легко: это единственная формула, где две единицы нужно умножить.

Для запоминания этой зависимости можно использовать рисунок в виде «пирамидки», разделенной на три секции, в вершине которой находится масса, а в нижних углах – плотность и объем.

Несколько иначе обстоят дела с газами.

Рассчитать их вес гораздо сложнее, так как у газов нет постоянной плотности: они рассеиваются и занимают весь доступный им объем.

Для этого пригодится понятие молярной массы, которую можно найти, сложив массу всех атомов в формуле вещества при помощи данных из периодической таблицы.

Вторая единица, которая нам понадобится – количество вещества в молях. Его можно вычислить по уравнению реакции. Подробнее об этом можно узнать в рамках курса химии.

Другой способ нахождения мольного количества – через объем газа, который нужно поделить на 22,4 литра. Последнее число – это объемная постоянная, которую стоит запомнить.

В итоге, зная две предыдущие величины, мы можем определить массу газа:

где M – это молярная масса, а n – количество вещества.

Результат получится в граммах, поэтому для решения физических задач важно не забыть перевести его в килограммы, поделив на 1000. Числа в этой формуле часто могут оказываться достаточно сложными, поэтому для вычислений может понадобиться калькулятор.

Еще один нестандартный случай, с которым можно столкнуться – необходимость найти плотность раствора

. Для этого существует формула средней плотности, построенная аналогично формулам других средних величин.

Для двух веществ посчитать ее можно так:

Также из этой формулы можно вывести несколько других в зависимости от того, какие из величин известны по условию задачи.

Формула зависимости массы от объема и плотности

Для того, чтобы найти плотность жидкости или твердого вещества, существует базовая формула: плотность равна массе, поделенной на объем.

Записывается это так:

И из нее можно вывести еще две формулы.

Формулу для объема тела:

А также формулу для расчета массы:

Как видите, запомнить последнюю очень легко: это единственная формула, где две единицы нужно умножить.

Для запоминания этой зависимости можно использовать рисунок в виде «пирамидки», разделенной на три секции, в вершине которой находится масса, а в нижних углах – плотность и объем.

Несколько иначе обстоят дела с газами.

Рассчитать их вес гораздо сложнее, так как у газов нет постоянной плотности: они рассеиваются и занимают весь доступный им объем.

Вес делить на плотность

Письмо с инструкцией по восстановлению пароля будет отправлено на вашу почту

В этом уроке мы изучим, как можно определить массу и объем тела, если известна плотность вещества.

Плотность – скалярная физическая величина, показывающая, чему равна масса вещества, взятого в объеме 1 м3, и равная отношению массы тела к его объему: p = m : v.

Из формулы плотности следует, что масса тела равна произведению плотности вещества на объем этого тела: m = ρ · V.

Чтобы вычислить объем тела, нужно массу тела разделить на его плотность: v = m : p.

Для правильного решения задач нужно уметь верно переводить единицы измерения величин в Международную систему единиц: 1 г = 0,001 кг, 1 л = 1 дм3 = 0,001 м3, 1 см3 = 0,000 001 м3, 1 г/см3 = 1000 кг/м3.

Какова масса подсолнечного масла в бутылке объемом 3 л, если плотность масла равна 930 кг/м3?

Запишем условие задачи. Нам известны объем бутылки (обозначается буквой V) 3 л, и плотность подсолнечного масла (обозначается буквой ρ) 930 кг/м3. Выразим объем бутылки в Международной системе единиц. 1 л = 0,001 м3, следовательно, 3 л составляют 0,003 м3.

Решение: Чтобы найти массу тела, нужно плотность умножить на объем: m = ρ · V. Подставим числовые значения величин: 930 кг/м3 · 0,003 м3 = 2,79 кг.

Сколько штук строительного кирпича размером 250 мм х 120 мм х 65 мм допускается перевозить на автомашине грузоподъемностью 4 т? Плотность кирпича 1800 кг/м3.

Запишем условие задачи и выразим данные в Международной системе единиц. Известны размеры кирпича: длина а = 250 мм = 0,25 м, ширина b= 120 мм = 0,12 м, высота с = 60 мм = 0,06 м, плотность кирпича ρ = 1800 кг/м3, грузоподъемность – наибольшая масса груза, которую может перевезти автомобиль – m = 4 т = 4000 кг. Найти количество кирпичей – обозначим латинской буквой N.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: