Как найти координаты середины отрезка

Середина отрезка. Координаты середины отрезка

В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, .

Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.

Формулы вычисления расстояния между двумя точками:

  • Формула вычисления координат середины отрезка с концами A( xa , ya ) и B( xb , yb ) на плоскости:
xc = xa + xb yc = ya + yb
2 2

Формула вычисления координат середины отрезка с концами A( xa , ya , za ) и B( xb , yb , zb ) в пространстве:

xc = xa + xb yc = ya + yb zc = za + zb
2 2 2

Примеры задач на вычисление середины отрезка

Примеры вычисления координат середины отрезка на плоскости

xc = xa + xb = -1 + 6 = 5 = 2.5
2 2 2
yc = ya + yb = 3 + 5 = 8 = 4
2 2 2

Ответ: С(2.5, 4).

Ответ: B(3, 7).

Примеры вычисления координат середины отрезка в пространстве

xc = xa + xb = -1 + 6 = 5 = 2.5
2 2 2
yc = ya + yb = 3 + 5 = 8 = 4
2 2 2
zc = za + zb = 1 + (-3) = -2 = -1
2 2 2

Ответ: С(2.5, 4, -1).

Ответ: B(3, 7, -6).

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение координат середины отрезка: примеры, решения

В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.

Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .

Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .

Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .

Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B

И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.

Середина отрезка на координатной прямой

Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .

Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.

| А С | = | С В | ⇔ x C — x A = x B — x C

Тогда возможно два равенства: x C — x A = x B — x C и x C — x A = — ( x B — x C )

Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).

Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных — несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):

Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.

Середина отрезка на плоскости

Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .

Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y — проекции точек A , B и C на оси координат (прямые О х и О y ).

Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:

x C = x A + x B 2 и y C = y A + y B 2

Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:

Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:

( x A + x B 2 , y A + y B 2 )

Середина отрезка в пространстве

Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .

A x , A y , A z ; B x , B y , B z и C x , C y , C z — проекции всех заданных точек на оси системы координат.

Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z

Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:

x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2

Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.

Определение координат середины отрезка через координаты радиус-векторов его концов

Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.

Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .

Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:

O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2

Следовательно, точка C имеет координаты:

x A + x B 2 , y A + y B 2

По аналогии определяется формула для нахождения координат середины отрезка в пространстве:

C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )

Примеры решения задач на нахождение координат середины отрезка

Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.

Исходные данные: на плоскости – точки с заданными координатами А ( — 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .

Решение

Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .

x C = x A + x B 2 = — 7 + 2 2 = — 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2

Ответ: координаты середины отрезка А В — 5 2 , 7 2 .

Исходные данные: известны координаты треугольника А В С : А ( — 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , — 8 ) . Необходимо найти длину медианы А М .

Решение

  1. По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :

x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( — 8 ) 2 = — 3

  1. Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :

A M = ( 6 — ( — 1 ) ) 2 + ( — 3 — 0 ) 2 = 58

Ответ: 58

Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , — 4 ) . Необходимо рассчитать координаты точки А .

Читайте также  Почему горчит картофель?

Решение

Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M — x C 1 = 2 · 4 — 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M — y C 1 = 2 · 2 — 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M — z C 1 = 2 · ( — 4 ) — 0 = — 8

Ответ: координаты точки А ( 7 , 3 , — 8 ) .

Координаты середины отрезка

  • Что такое середина отрезка
  • Правила нахождения координат середины отрезка, формулы
    • Середина отрезка на координатной прямой
    • Середина отрезка на плоскости
    • Середина отрезка в пространстве
  • Метод с использованием координат радиус-векторов концов отрезка
  • Примеры решения задач

Что такое середина отрезка

Отрезок — это геометрическая фигура, представляющая собой ограниченный с двух сторон участок прямой.

Пусть точки A и B не совпадают. Если провести через них прямую, то образуется отрезок AB или BA, который ограничен точками A и B. Данные точки являются концами отрезка.

Длина отрезка — это расстояние между двумя точками, ограничивающими данный отрезок. Длина отрезка AB обозначается как модуль данной геометрической фигуры, то есть |AB|.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Серединой отрезка является такая точка C, принадлежащая отрезку AB, которая расположена в центре данного отрезка, то есть |AC|=|CB|.

Правила нахождения координат середины отрезка, формулы

Середина отрезка на координатной прямой

Предположим, что несовпадающие точки A и B лежат на координатной прямая Ох. Известно, что A и B соответствуют действительные числа xA и xB, а точка С делит AB пополам. Определите координату xC, соответствующую С.

Так как C — это середина AB, то справедливо следующее равенство:

Вычислим расстояние между A и C, а также между C и B. Для этого определим модуль разницы их координат. На математическом языке это будет иметь вид:

Опустим знак модуля и получим справедливость двух выражений:

Исходя из первого равенства, получим формулу нахождения xC, согласно которой координата точки С равна половине суммы координат A и B:

Следствием второго равенства будет следующее утверждение:

Это противоречит заданным условиям, следовательно, формула определения координат середины отрезка выглядит так:

Середина отрезка на плоскости

В декартовой системе координат Oxy расположены две точки A(xA,yA) и B(xB,yB), которые не совпадают между собой. Точка C является центром AB. Необходимо произвести вычисление координат xC и yC, соответствующих С.

Пусть произвольные точки А и В лежат на одной координатной прямой, а также не принадлежат прямым, располагающимся перпендикулярно к оси абсцисс или ординат. Опустим от заданных точек A, B, C перпендикуляры на ось x на ось y. Полученные точки пересечения с осями координат Ax, Ay; Bx, By; Cx, Cy — это проекции исходных точек.

По построению прямые AAx, BBx, CCx относительно друг друга находятся параллельно. Прямые AAy, BBy, CCy не пересекаются, то есть являются параллельными. Согласно равенству AB=BC, далее применим теорему Фалеса и получим:

Это значит, что Cx и Cy являются серединами отрезков AxBx и AyBy соответственно. Теперь воспользуемся формулой определения координат середины отрезка на координатной прямой и получим:

Данные формулы подходят для вычисления координат середины отрезка в случае его расположения на осях абсцисс и ординат, а также при перпендикулярности одной из них. Следовательно, координаты центра отрезка AB, находящегося в плоскости и ограниченного точками A(xA,yA) и B(xB,yB), вычисляются следующим образом:

Середина отрезка в пространстве

Допустим, что в трехмерной системе координат Oxyz любые две точки с соответствующими им координатами A(xA, yA, zA) и B(xB, yB, zB). C(xC, yC, zC) — это центр АВ. Задание заключается в том, чтобы определить xC, yC, zC.

Проведем от исходных точек перпендикуляры к прямым Ox, Oy и Oz. Образовавшиеся точки пересечения с координатными осями — Ax, Ay, Az; Bx, By, Bz; Cx, Cy, Cz — проекции точек A, B, C на них.

Воспользуемся теоремой Фалеса:

Исходя из полученных равенств следует, что Cx, Cy, Cz — делят AxBx, AyBy, AzBz пополам, то есть являются серединами перечисленных отрезков. Значит, для определения координат центра AB с концами A(xA,yA,zA) и B(xB,yB,zB) используем формулу:

Метод с использованием координат радиус-векторов концов отрезка

Трактовка векторов в алгебре позволяет составить формулу для расчета координат середины отрезка.

Дано: прямоугольная система координат Oxy, в которой лежат произвольные точки A(xA,yA) и B(xB,yB), а также C, делящая пополам отрезок, ограниченный A и B.

По определению действий над вектором в геометрии:

В рассматриваемой ситуации в точке C пересекаются диагонали параллелограмма с основаниями: (overrightarrow,;overrightarrow ) .

Это значит, что С — это центр диагоналей.

Поскольку координаты радиус вектора совпадают с координатами точки, имеем: (overrightarrow=left(x_A,;y_Aright),;overrightarrow=left(x_B,;y_Bright) ) .

Произведем подстановку в формулу (1):

Получили формулу определения координат середины отрезка, находящегося в декартовой системе координат:

По аналогично схеме можно вывести формулу для расчета координат центра отрезка, лежащего в пространстве:

Примеры решения задач

Дано: в декартовой системе координат имеются точки M(5,4) и N(1,−2). Найти координаты середины отрезка MN.

Пусть точка O — центр MN. Тогда вычислим ее координаты, подставив в формулы:

Точка O имеет координаты (3,1).

Дано: треугольник ABC лежит в прямоугольной системе координат. Известны координаты его вершин: A(7,3), B(−3,1), C(2,4). Вычислите длину медианы АМ.

Поскольку АМ является медианой треугольника ABC, то точка М делит сторону ВС на два равных отрезка, то есть является серединой отрезка ВС. Отсюда можно вычислить координат точки М:

Теперь, зная координаты начала и конца отрезка АМ, применим формулу нахождения расстояния между точками:

Формула нахождения координаты середины отрезка

Вы будете перенаправлены на Автор24

Начальные геометрические сведения

Понятие отрезка, как и понятие точки, прямой, луча и угла, относится к начальным геометрическим сведениям. С перечисленных понятий начинается изучение геометрии.

Под «начальными сведениями» обычно понимают нечто элементарное и простое. В понимании, возможно, это так и есть. Тем не менее, такие простые понятия часто встречаются и оказываются необходимыми не только в нашей повседневной жизни, но и в производстве, строительстве и прочих сферах нашей жизнедеятельности.

Начнём с определений.

Отрезок — часть прямой, ограниченная двумя точками (концами).

Если концы отрезка являются точками $A$ и $B$, то образованный отрезок записывают как $AB$ или $BA$. Такому отрезку принадлежат точки $A$ и $B$, а также все точки прямой, лежащие между этими точками.

Рисунок 1. Отрезок. Автор24 — интернет-биржа студенческих работ

Середина отрезка — точка отрезка, которая делит его пополам на два равных отрезка.

Если это точка $C$, то $AC=CB$.

Рисунок 2. Середина отрезка. Автор24 — интернет-биржа студенческих работ

Измерение отрезка происходит сравнением с определённым отрезком, принятым за единицу измерения. Чаще всего используют сантиметр. Если в заданном отрезке сантиметр укладывается ровно четыре раза, то это означает, что длина данного отрезка равна $4$ см.

Готовые работы на аналогичную тему

Введём простое наблюдение. Если точка делит отрезок на два отрезка, то длина всего отрезка равна сумме длин этих отрезков.

Формула нахождения координаты середины отрезка

Формула нахождения координаты середины отрезка относится к курсу аналитической геометрии на плоскости.

Дадим определение координатам.

Координаты — это определённые (или упорядоченные) числа, которые показывают положение точки на плоскости, на поверхности или в пространстве.

Читайте также  Как играть на авианосцах в World of Warships

В нашем случае, координаты отмечаются на плоскости, определённой координатными осями.

Рисунок 3. Координатная плоскость. Автор24 — интернет-биржа студенческих работ

Опишем рисунок. На плоскости выбрана точка, называемая началом координат. Её обозначают буквой $O$. Через начало координат проведены две прямые (координатные оси), пересекающиеся под прямым углом, причём одна из них строго горизонтальная, а другая — вертикальная. Такое положение считается обычным. Горизонтальная прямая называется осью абсцисс и обозначается $OX$, вертикальная — осью ординат $OY$.

Таким образом, оси определяют плоскость $XOY$.

Координаты точек в такой системе определяются двумя числами.

Существуют разные формулы (уравнения), определяющие те или иные координаты. Обычно в курсе аналитической геометрии изучают разные формулы прямых, углов, длины отрезка и прочие.

Перейдём сразу к формуле координаты середины отрезка.

Если координаты точки $E(x,y)$ — это середина отрезка $M_1M_2$, то:

Рисунок 4. Формула нахождения координаты середины отрезка. Автор24 — интернет-биржа студенческих работ

Практическая часть

Примеры из школьного курса геометрии достаточно просты. Рассмотрим несколько основных.

Для лучшего понимания, рассмотрим для начала элементарный наглядный пример.

Рисунок 5. Отрезки на плоскости. Автор24 — интернет-биржа студенческих работ

На рисунке отрезки $AC, CD, DE, EB$ равны.

  1. Серединой каких отрезков является точка $D$?
  2. Какая точка является серединой отрезка $DB$?
  1. точка $D$ является серединой отрезков $AB$ и $CE$;
  2. точка $E$.

Рассмотрим другой простой пример, в котором нужно вычислить длину.

Точка $B$ — середина отрезка $AC$. $AB = 9$ см. Какая длина $AC$?

Так как т. $B$ делит $AC$ пополам, то $AB = BC= 9$ см. Значит, $AC = 9+9=18$ см.

Прочие подобные примеры обычно идентичны и ориентированы на умение сопоставлять значения длин и их представление с алгебраическими действиями. Нередко в задачах встречаются случаи, когда сантиметр не укладывается ровное количество раз в отрезок. Тогда единицу измерения делят на равные части. В нашем случае сантиметр делится на 10 миллиметров. Отдельно измеряют остаток, сравнивая с миллиметром. Приведём пример, демонстрирующий такой случай.

Точка $B$ — середина отрезка $AC$. $AC = 8,4$ см. Какая длина $AB$?

Так как т. $B$ делит $AC$ пополам, то $AB = frac<8,4><2>$ см. Значит, $AB = 4,2$ см.

Если в очередной задаче возникают трудности с пониманием её решения (например, нетипичные случаи с несколькими отрезками, образующими углами и прочими усложнениями), то лучше рассмотреть задачу, сделав по её условию рисунок. Наглядность способствует лучшему пониманию и более скорому нахождению решения.

Теперь решим задачи по аналитической геометрии.

Даны точки $T_1(7,11)$ и $T_2(1,23)$. Требуется найти координаты середины отрезка $T_1T_2$.

Абсцисса середины отрезка: $x=frac<7+1><2>=4$. Ордината: $y=frac<11+23><2>=17$.

Даны точки $T(6,-1)$ и $S(-4,-8)$. Точка $S$ — середина $TK$. Найти координаты $K$.

Алгебра. 7 класс

Конспект урока

Длина отрезка. Координатная ось

Перечень вопросов, рассматриваемых в теме:

• Действительное число как мера длины отрезка.

• Точки с действительными координатами на числовой оси.

• Сравнение действительных чисел на числовой оси.

Измерение длины отрезка – это сравнение длины отрезка с выбранной единицей измерения.

Длиной отрезка называется положительная величина, определённая для каждого отрезка. Любой отрезок имеет определённую длину, большую нуля.

Для каждого положительного действительного числа существует отрезок, длина которого выражается этим числом.

Отрезок, принятый за единицу измерения, называется единичным отрезком.

Прямую, на которой выбрано начало отсчета, положительное направление и единичный отрезок, называют координатной осью.

Координатой точки Р, лежащей на оси Ох, называется действительное число х = ±ОР, взятое со знаком «плюс», если точка Р лежит на положительной полуоси, и со знаком «минус», если эта точка лежит на отрицательной полуоси (где ОР означает длину отрезка ОР).

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Длина отрезка

Рассмотрим несколько примеров измерения длины отрезка.

За единицу измерения возьмём 1 дм.

Длина отрезка АВ = 2 дм

Это значит, что на отрезке АВ укладывается ровно 2 дм.

Пусть длина отрезка АВ будет > 2дм, например, 2,1 дм

Пусть следующий отрезок имеет длину 2,14 дм.

Можно указать, что длина отрезка АВ ≈ 2,1дм с точностью до 0,1дм с недостатком.

Далее можно рассматривать отрезок

АВ ≈ 2,14 дм с точность до 0,01 и т.д.

В таких случаях длина отрезка АВ может быть выражена приближённо. Точное значение длины отрезка АВ выражается бесконечной десятичной дробью: AB = a, a1, a2, a3… Говорят, что отрезок AB имеет длину a, где a = a, a1, a2, a3

Если задан единичный отрезок, то произвольный отрезок АВ имеет длину, равную некоторому положительному действительному числу а.

Верно обратное утверждение:

если задано любое положительное действительное число а, то можно указать отрезок АВ, длина которого равна этому числу.

Координатная ось

Далее зададим прямую, на которой выбрано положительное направление, начальная точка отсчета О и единичный отрезок.

Её называют координатной осью.

Точка О делит координатную ось на два луча. Один из них, идущий от точки О в положительном направлении, называют положительной полуосью, другой – отрицательной полуосью.

Каждой точке координатной оси поставим в соответствие действительное число х по следующему правилу:

начальной точке поставим в соответствие число ноль;

точке А, если она находится на положительном луче, поставим в соответствие число х, равное длине отрезка ОА.

Точке В, если она находится на отрицательном луче, поставим в соответствие отрицательное число х, равное длине отрезка ОВ, взятой со знаком «–».

На рисунке изображена координатная ось ОХ, где О – начало отсчёта.

• каждой точке оси соответствует действительное число – координата этой точки;

• две различные точки А и В оси имеют разные координаты х1 и х2;

• каждое действительное число есть координата некоторой точки оси.

Это означает, что установлено взаимно – однозначное соответствие между точками оси и действительными числами.

Замечание: ранее на координатной прямой нами рассматривались точки, имеющие рациональные координаты. Теперь каждой точке соответствует действительное число.

Разбор решения заданий тренировочного модуля

Задача 1. Длина отрезка

Найдите: длину АВ, координату точки С – середины АВ.

1. Чтобы найти длину отрезка надо из большей координаты вычесть меньшую, т.е. 2,6 – (-3,8) = 2,6 + 3,8 = 6,4

2. Чтобы найти координаты середины отрезка, надо сложить координаты и разделить на 2, т.е. (-3,8 +2,6) : 2 = -1,2 : 2 = -0,6.

Ответ: АВ = 6,4; С(-0,6).

Задача 2. Координатная ось.

Дано: на координатной оси расположены точки a, b, c.

Число a больше b, т.к. оно правее.

2) c – a и 0

Число c меньше a, значит, разность отрицательная, т.е.

Читайте также  Сколько памперсов брать в роддом на 3 дня

Урок 3

расстояние между двумя точками.

деление отрезка в данном отношении.

Расстояние между двумя точками.

теорема 4 . для любых двух точек м 1 (х 1 ;у 1 ) и м 2 (х 2 ;у 2 ) Плоскости расстояние d между ними выражается формулой:

доказательство. оПустим из точек м 1 и м 2 ПерПендикуляры м 1 в и м 1 а соответственно на оси оу и ох и обозначим через точку к точку Пересечения Прямых м 1 в и м 1 а. точка к имеет координаты (х 2 ;у 1 ). согласно теореме 3 имеем l м 1 к l = l х 2 — х 1 l и l м 2 к l = l у 2 — у 1 l.

так как Полученный треугольник Прямоугольный, то По теореме Пифагора

d 2 = м 1 м 2 2 =м 1 к 2 +м 2 к 2 или . теорема доказана.

Пример 1. найти расстояние между точками а(-2;3) и в(5;4).

решение. исПользуя данную формулу, Получим:&amP;NbSP;

уПражнение. даны точки а(0;0), в(3;-4), с(-3;4). найдите расстояние между точками: а) аи в; б) в и с; в) а и с. (ответ: а) 5, б) 10, в) 5)

теорема 5. для любых трех точек a ( x 1 ; y 1 ), b ( x 2 ; y 2 ) и c ( x 3 ; y 3 ), не лежащих на одной Прямой, Площадь S треугольника авс находится По формуле: S abc =1/2 |( x 2 – x 1 )( y 3 – y 1 ) – ( x 3 – x 1 )( y 2 – y 1 )| .

доказательство. Площадь треугольника авс, изображенного на рисунке, можно найти так:

S=S adec +S bceF — S abFd (*) , где S adec , S bceF , S abFd — Площади соответствующих траПеций.

выражая Площадь каждой траПеции через координаты точек а, в и с, находим:

S adec =1/2 (ad+ce)*de = 1/2( x 3 – x 1 )( y 3 + y 1 )

S bceF =1/2 (ec+bF)*eF = 1/2 ( x 2 – x 3 )( y 2 + y 3 )

S abFd =1/2 (ad+bF)*dF = 1/2 ( x 2 – x 1 )( y 2 + y 1 )

Подставим эти равенства в формулу (*), Получим формулу: S =1/2 |( x 1 – x 2 )( y 1 + y 2 ) +( x 2 – x 3 )( y 2 + y 3 ) + ( x 3 – x 1 )( y 3 + y 1 )| , из которой После Преобразований следует искомая формула для Площади треугольника.

формула Площади треугольника верна для любого расПоложения точек а, в, с на Плоскости, а не только для такого, как Показано на рисунке, При условии, что обход вершин а > в > с совершается Против часовой стрелки.

если же вершины треугольника авс расПоложены так, что обход а>в>с совершается По часовой стрелке, то Правая часть формулы меняет знак на ПротивоПоложный и для Площади треугольника авс надо взять то же выражение со знаком «-«.

Пример 2. даны точки а(1;1), в(6;4), с(8;2). найти Площадь треугольника авс.

решение. Подставляя координаты точек в формулу для Площади треугольника, Получим:

S abc =1/2 |(6 – 1)(2 –1) – (8 – 1)(4 – 1)| = 1/2 l-16l =8

уПражнение. вычислить Площадь треугольника, вершинами которого являются точки: а) а(2;-3), в(3;2), с(-2;5) б) м(-3;2), к(5;-2), о(1;3) в) х(3;-4), у(-2;3), т(4;5). (ответ: а) 14, б) 12, в) 25).

Деление отрезка в данном отношении.

Пусть на Плоскости дан Произвольный отрезок м 1 м 2 и Пусть м — любая точка этого отрезка, отличная от точки м 2 .

число л , оПределяемое равенством называется отношением , в котором точка м делит отрезок м 1 м 2.

задача о делении отрезка в данном отношении состоит в том, чтобы По данному отношению Л и данным координатам точек м 1, м 2 найти координаты точки м.

эту задачу Позволяет решить следующая теорема.

терема 6. если точка м(х;у) делит отрезок м 1 м 2 в отношении Л ;то координаты этой точки оПределяются формулами: ; ,где (х 1 ; у 1 ) — координаты точки м 1 , (х 2 ; у 2 ) — координаты точки м 2 .

доказательство. Пусть Прямая м 1 м 2 не ПерПендикулярна оси ох. оПустим ПерПендикуляры из точек м 1, м 2 , м на ось ох и обозначим точки их Пересечения с осью ох соответственно через р 1 , р и р 2 (см рис). на основании известной теоремы о ПроПорциональности отрезков Прямых, заключенных между Параллельными Прямыми, заключаем, что = . но По теореме 3 имеем l р 1 р l=lх-х 1 l и l рр 2 l=lх 2 -хl. так как числа

( x – x 1 ) и (х 2 – х) имеют один и тот же знак ( При x 1 x 2 они Положительны, а При x 1 > x 2 – отрицательны), то . Поэтому , откуда . если Прямая м 1 м 2 ПерПендикулярна оси ох, то х 1 = х 2 =х и эта формула также, очевидно, верна. формула для вычисления второй координаты у выводится аналогично. теорема доказана.

следствие. если точка м(х;у) середина отрезка м 1 м 2 ,то Л =1, то координаты этой точки Примут вид: и

,где (х 1 ; у 1 ) — координаты точки м 1 , (х 2 ; у 2 ) — координаты точки м 2 . таким образом, каждая координата середины отрезка равна Полусумме соответствующих координат.

Пример 3. даны точки а(-2;3) и в(4;6). отрезок, ограниченный этими точками, разделен в отношении Л =2. найдите координаты точки м(х;у).

решение. Подставим координаты точек и Л =2 в формулы, Получим: х= (-2+2*4) / (1+2)=2; у= (3+2*6) / (1+2)=5. следовательно, координаты точки деления м(2;5).

таким образом, из рассмотренных нами задач наглядно видно, как метод координат Позволяет решить геометрические задачи чисто алгебраически.

на оси ох найдите точку, расстояние которой от точки а(3;4) равно 5. (ответ: (6;0) и (0;0))

точка м является серединой отрезка оа, соединяющего начало координат о с точкой а(-5;2). найдите координаты точки м. (ответ: (-2,5;1))

точка м(2;3) делит отрезок ав в отношении 1:2. найдите координаты точки в, если известно, что точка а имеет координаты (1;2). (ответ: в(4;5))

вершинами треугольника служат точки а(-2;1), в(2;2), с(4;у). Площадь треугольника равна 15. оПределите ординату вершины с. (ответ: 10 или -5).

найдите координаты центра тяжести однородной Пластинки, имеющей форму треугольника с вершинами а(-2;1), в(2;-1), с(4;3).(ответ: х=4 / 3, у=1, указание: центр тяжести треугольника находится в точке Пересечения его медиан, которая делит каждую из медиан в отношении 2:1, считая от вершины)

Площадь треугольника равна 3, две его вершины — точки а(3;1) и в(1;-3). найдите координаты третьей вершины, если известно, что она лежит на оси ординат. (ответ: с(0;-8) или с(0;2))

Площадь Параллелограмма равна 12, две его вершины — точки а(-1;3) и в(-2;4). найдите две другие вершины Параллелограмма, если известно, что точка Пересечения его диагоналей лежит на оси абсцисс. (ответ: (-7;-3) и (-6;-4) или (17;-3) и (18;-4))

вершины треугольника — точки а(3;6), в(-1;3) и с(2;-1). найдите длину его высоты, Проведенной из вершины с. (ответ:5)

три вершины Параллелограмма- точки а(3;7), в(2;-3) и с(-1;4). найдите длину высоты, оПущенной из вершины в на сторону ас. (ответ: 7 или 4)

отрезок, ограниченный точками а(1;-3) и в(4;3), разделен на три равные части. оПределите координаты точек деления. (ответ: (2;-1) и (3;1))

оПределите координаты концов отрезка а и в, который точками к(2;2) и м(1;5) разделен на три равные части. (ответ: а(3;-1) и в(0;8))

три вершины Параллелограмма — точки а(3;-5), в(5;-3) и с(-1;3). оПределите четвертую вершину, ПротивоПоложную в. (ответ: (-3;1))

найдите Площадь Пятиугольника с вершинами о(0;0), а(3;-2), в(5;-1), с(8;4) и е(4;5). (ответ: 29,5)

Автор: Вяликова Мария Владимировна — учитель математики и информатики высшей квалификационной категории МАОУ Пролетарская СОШ Новгородского района Новгородской области

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: