Как изготавливают сталь

Производство стали – технология, этапы, оборудование

Производство стали сегодня осуществляется в основном из отработанных стальных изделий и передельного чугуна. Сталь представляет собой сплав железа и углерода, последнего в котором содержится от 0,1 до 2,14%. Превышение содержания углерода в сплаве приведет к тому, что он станет слишком хрупким. Суть процесса производства стали, в составе которой содержится гораздо меньшее количество углерода и примесей, по сравнению с чугуном, состоит в том, чтобы в процессе плавки перевести эти примеси в шлак и газы, подвергнуть их принудительному окислению.

Процесс производства стали

Особенности процесса

Производство стали, осуществляемое в сталеплавильных печах, предполагает взаимодействие железа с кислородом, в процессе которого металл окисляется. Окислению также подвергаются углерод, фосфор, кремний и марганец, содержащиеся в передельном чугуне. Окисление данных примесей происходит за счет того, что оксид железа, образующийся в расплавленной ванне металла, отдает кислород более активным примесям, тем самым окисляя их.

Производство стали предполагает прохождение трех стадий, каждая из которых имеет свое значение. Рассмотрим их подробнее.

На данном этапе расплавляется шихта и формируется ванна из расплавленного металла, в которой железо, окисляясь, окисляет примеси, содержащиеся в чугуне (фосфор, кремний, марганец). В процессе этого этапа производства из сплава необходимо удалить фосфор, что достигается за счет содержания в шлаке расплавленного оксида кальция. При соблюдении таких условий производства фосфорный ангидрид (Р2О5) создает с оксидом железа (FeO) неустойчивое соединение, которое при взаимодействии с более сильным основанием — оксидом кальция (CaO) — распадается, и фосфорный ангидрид превращается в шлак.

Чтобы производство стали сопровождалось удалением из ванны расплавленного металла фосфора, необходима не слишком высокая температура и содержание в шлаке оксида железа. Чтобы удовлетворить эти требования, в расплав добавляют окалину и железную руду, которые и формируют в ванне расплавленного металла железистый шлак. Содержащий высокое количество фосфора шлак, формирующийся на поверхности ванны расплавленного металла, удаляется, а вместо него в расплав добавляются новые порции оксида кальция.

Кипение ванны расплавленного металла

Дальнейший процесс производства стали сопровождается кипением ванны расплавленного металла. Такой процесс активизируется с повышением температуры. Он сопровождается интенсивным окислением углерода, происходящим при поглощении тепла.

Процесс производства стали в электропечах

Производство стали невозможно без окисления излишков углерода, такой процесс запускают при помощи добавления в ванну расплавленного металла окалины или вдувания в нее чистого кислорода. Углерод, взаимодействуя с оксидом железа, выделяет пузырьки оксида углерода, что создает эффект кипения ванны, в процессе которого в ней снижается количество углерода, а температура стабилизируется. Кроме того, к всплывающим пузырькам оксида углерода прилипают неметаллические примеси, что способствует уменьшению их количества в расплавленном металле и приводит к значительному улучшению его качества.

На данной стадии производства из сплава также удаляется сера, присутствующая в нем в форме сульфида железа (FeS). При повышении температуры шлака сульфид железа растворяется в нем и вступает в реакцию с оксидом кальция (CaO). В результате такого взаимодействия образовывается соединение CaS, которое растворяется в шлаке, но раствориться в железе не может.

Добавление в расплавленный металл кислорода способствует не только удалению из него вредных примесей, но и увеличению содержания данного элемента в стали, что приводит к ухудшению ее качественных характеристик.

Чтобы уменьшить количество кислорода в сплаве, выплавка стали предполагает осуществление процесса раскисления, который может выполняться диффузионным и осаждающим методом.

Диффузионное раскисление предполагает введение в шлак расплавленного металла ферросилиция, ферромарганца и алюминия. Такие добавки, восстанавливая оксид железа, снижают его количество в шлаке. В результате растворенный в сплаве оксид железа переходит в шлак, распадается в нем, высвобождая железо, которое возвращается в расплав, а высвобожденные оксиды остаются в шлаке.

Производство стали с осаждающим раскислением осуществляется путем введения в расплав ферросилиция, ферромарганца и алюминия. Благодаря наличию в своем составе веществ, обладающих большим сродством к кислороду, чем железо, такие элементы образуют соединения с кислородом, который, отличаясь невысокой плотностью, выводится в шлак.

Производство стали в мартеновских печах

Регулируя уровень раскисления, можно получать кипящую сталь, которая не полностью раскислена в процессе плавки. Окончательное раскисление такой стали происходит при затвердевании слитка в изложнице, где в кристаллизующемся металле продолжается взаимодействие углерода и оксида железа. Оксид углерода, который образуется в результате такого взаимодействия, выводится из стали в виде пузырьков, также содержащих азот и водород. Полученная таким образом кипящая сталь, содержит незначительное количество металлических включений, что придает ей высокую пластичность.

Производство сталей может быть направлено на получение материалов следующего типа:

  • спокойных, которые получаются, если в ковше и печи процесс раскисления полностью завершен;
  • полуспокойных, которые по степени раскисления находятся между спокойными и кипящими сталями; именно такие стали раскисляются и в ковше, и в изложнице, где в них продолжается взаимодействие углерода и оксида железа.

Если производство стали предполагает введение в расплав чистых металлов или ферросплавов, то в результате получаются легированные сплавы железа с углеродом. Если в стали данной категории необходимо добавить элементы, которые имеют меньшее сродство к кислороду, чем железо (кобальт, никель, медь, молибден), то их вводят в процессе плавки, не опасаясь за то, что они окислятся. Если же легирующие элементы, которые необходимо добавить в сталь, имеют большее сродство к кислороду, чем железо (марганец, кремний, хром, алюминий, титан, ванадий), то их вводят в металл уже после его полного раскисления (на окончательном этапе плавки или в ковш).

Необходимое оборудование

Технология производства стали предполагает использование на сталелитейных заводах следующего оборудования.

Участок кислородных конверторов:

  • системы обеспечения аргоном;
  • сосуды конверторов и их несущие кольца;
  • оборудование для фильтрации пыли;
  • система для удаления конверторного газа.
  • печи индукционного типа;
  • дуговые печи;
  • емкости, с помощью которых выполняется загрузка;
  • участок складирования металлического лома;
  • преобразователи, предназначенные для обеспечения индукционного нагревания.

Участок вторичной металлургии, на котором осуществляется:

  • очищение стали от серы;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуумной среды.

Участок для реализации ковшовой технологии:

  • LF-оборудование;
  • SL-оборудование.

Ковшовое хозяйство, обеспечивающее производство стали, также включает в себя:

  • крышки ковшей;
  • ковши литейного и разливочного типа;
  • шиберные затворы.

Производство стали также предполагает наличие оборудования для непрерывной разливки стали. К такому оборудованию относится:

  • поворотная станина для манипуляций с разливочными ковшами;
  • оборудование для осуществления непрерывной разливки;
  • вагонетки, на которых транспортируются промежуточные ковши;
  • лотки и сосуды, предназначенные для аварийных ситуаций;
  • промежуточные ковши и площадки для складирования;
  • пробочный механизм;
  • мобильные мешалки для чугуна;
  • оборудование для обеспечения охлаждения;
  • участки, на которых выполняется непрерывная разливка;
  • внутренние транспортные средства рельсового типа.

Производство стали и изготовление из нее изделий представляет собой сложный процесс, сочетающий в себе химические и технологические принципы, целый перечень специализированных операций, которые используются для получения качественного металла и различных изделий из него.

Как и из чего получают сталь

Сталь — ковкий сплав железа с углеродом и другими легирующими элементами. Ее используют для изготовления металлопроката, посуды, медицинских инструментов, механизмов и различных деталей для промышленности. Сплав почти на 99 % состоит из железа. Углерод занимает от 0,1 до 2,14 % общей массы металла. Углерод, марганец, кремний, магний, фосфор и сера изменяют физико-химические свойства стали. Количество примесей определяет способы обработки металла и сферы его применения. Производство стали занимает весомую долю черной металлургии.

Из чего делают сталь?

Сталь — одна из самых востребованных в промышленности. Железо и углерод — основные компоненты для изготовления стали. Железо отвечает за пластичность и вязкость, а углерод — за твердость и прочность.

Получают деформируемый сплав железа, который поддается механической, термической, токарной и фрезерной обработке. Литьем, прессованием, резкой, шлифовкой и сверловкой добиваются нужной формы. Стальные изделия получают с точно выверенными размерами.

Железо и углерод занимают львиную долю от общей массы, но кроме них сталь всегда содержит другие примеси. Чистота по неметаллическим включениям определяет качества стали. Оксиды, сульфиды и вредные примеси делают ее хрупкой и непластичной. Их содержание снижают очисткой или вводят дополнительные компоненты, чтобы добиться нужных физико-химических свойств.

Примеси бывают полезными и вредными. Разделение условное и означает то, что элементы улучшают химический состав стали или ухудшают его свойства. К полезным элементам относятся марганец и кремний. Сера, фосфор, кислород, азот, водород — вредные примеси в составе стали.

Как влияют полезные и вредные примеси на свойства стали?

Эффект от различных элементов в сталях:

  • Марганец повышает прокаливаемость металла и нейтрализует вредное воздействие серы.
  • Кремний улучшает прочность и способствует раскислению сплава, удаляя оксиды и сульфиды.
  • Сера ухудшает пластичность и вязкость. Ее большое содержание проявляется красноломкостью: во время горячей обработки металл трескается в области красного или желтого каления.
  • Фосфор снижает пластичность и ударную вязкость сплава. Повышенное содержание фосфора приводит к хладноломкости: при механической обработке металл трескается или разламывается на куски.
  • Кислород и азот разрушают структуру стали, ухудшают вязкость и пластичность.
  • Водород приводит к хрупкости металла.

Чтобы удалить вредные примеси и неметаллические включения, жидкую сталь рафинируют. Используют комбинированное рафинирование в печи и вне печи. К примеру, раскисление, десульфурацию, дегазацию и другое. За счет очистки структура металла становится однородной, а качество возрастает.

Почему сталь сравнивают с чугуном?

Металлы похожи составом и способом изготовления. Чугун и сталь — сплавы железа, отличающиеся по концетрации углерода. В чугуне его свыше 2,14 % от общей массы, а в стали — не больше 2,14 %. Кроме процентной доли углерода в сплаве, они различны по свойствам. Чугун жаростойкий, теплоемкий, легкий и устойчивый к коррозии. А сталь прочнее, тверже и легче поддается механической обработке.

Плюсы и минусы стали

Сталь классифицируется по химическому составу и физическим свойствам. Разным маркам металла характерны свои преимущества и недостатки.

По сравнению с другими сплавами сталь отличается:

  • высокой прочностью;
  • твердостью;
  • устойчивостью к ударной, статической и динамической нагрузке;
  • пригодностью к сварке, резке и гибке заготовок механическим или ручным способом;
  • многолетней износостойкостью;
  • доступной стоимостью.

К минусам стали относится нестойкость к коррозии, тяжелый вес и намагничивание. Чтобы изделия из стали не портились, изготавливают нержавеющие марки. Чтобы получить устойчивый к коррозии сплав, добавляют хром. Также в составе могут присутствовать никель, молибден, титан, сера, фосфор.

Способы производства

Используют три метода изготовления стали, у каждого из которых свои достоинства и недостатки.

Мартеновские печи

Применяемые печи выкладывают из хромо-магнезитового кирпича. В них плавят сырье, окисляют сплав и удаляют посторонние включения. Печи могут быть использованы для изготовления углеродистых и легированных сталей. Они нагреваются до температуры +2000оС, позволяют добавлять различные примеси.

Кислородно-конвертерный метод

Это способ, получивший звание универсального. Его используют в производстве ферромагнитных сплавов. Выплавляют сталь из жидкого чугуна и шихты. Задействуют конвертер, облицованный огнеупорными материалами. Чтобы ускорить процесс окисления, через него подают струю воздуха.

Читайте также  Каков размер желтого тела при беременности

Электродуговой способ

Принцип производства заключается в выделении тепла при горении электрической дуги. Тепловой режим обеспечивает плавление сырья под температурой +6000оС. Благодаря нему получаются высококачественные сплавы. У этой группы больше остальных хорошо раскисленных сталей.

Как получают сталь?

Производство стали состоит из нескольких этапов. Нарушения технологии влияют на свойства металла.

Расплавление шихты железных руд и нагрев ванны жидкого металла

На первом этапе плавят сырье на низкой температуре. При постепенном повышении температуры окисляется железо, кремний, марганец, фосфор. Затем повышают содержание оксида кальция, чтобы удалить фосфор.

Кипение ванны металла

Повышение температуры и интенсивное окисление железа путем введения руды, окалины и кислорода. Введение добавок позволяет получить оксид железа. С ним будет взаимодействовать углерод. Образующиеся пузырьки оксида углерода приводят сплав в кипящее состояние. К пузырькам прилипают сторонние примеси, тем самым очищая состав стали. Также удаляют сульфид железа, чтобы избавиться от серы.

Раскисление стали

В этом процессе восстанавливают оксид железа, который был растворен в жидком металле. Когда плавят шихту, кислород окисляет примеси, но в готовой стали он не нужен. Кислород понижает механические свойства стали, поэтому его нужно восстановить и удалить. Раскисляют стали ферромарганцем, ферросилицием, алюминием. Попадая в сплав, раскислители образуют оксиды низкой плотности, а затем отходят в шлак.

Как классифицируют сталь?

Физико-механические свойства и химический состав определяют виды металла. Сталь делят по составу, методу получения, структуре и примесям. Углеродистые и легированные стали различают по содержанию углерода и легирующим элементам. Сплавы обычного и высокого качества делят по содержанию примесей. Инструментальные, конструкционные и специальные стали делят в зависимости от назначения.

Углеродистые стали

Углеродистая сталь содержит углерод от 0,1 до 2,14 %. Количество углерода определяет группы стали:

  • Низкоуглеродистые содержат меньше 0,3 % углерода.
  • Среднеуглеродистые — от 0,3 до 0,7 %.
  • Высокоуглеродистые — более 0,7 до 2,14 %.

По процентному содержанию углерода определяют структуру сплава. Сталь с 0,8 % углерода сохраняет ферритно-перлитную структуру, с повышением меняет ее на перлит и цементит. Преобразования каждой фазы отражаются на прочностных характеристиках. Также углеродистые стали разделяют на группы А, Б, В, которые в свою очередь делятся на категории и марки.

Легированные

Сталь обогащают марганцем, хромом, никелем, молибденом и другими легирующими элементами. Количество примесей считают суммарно. В зависимости от их содержания различают:

  • низколегированные — до 2,5 % примесей;
  • среднелегированные — от 2,5 до 10 %;
  • высоколегированные — более 10 %.

Марганцем повышают прочность и твердость материала, хромом — стойкость к ударам, жаропрочность и устойчивость к коррозии. Никель делает сталь упругим и стойким к высоким температурам.

Марки стали отличаются сложной структурой. Обязательно указывают их состав в порядке убывания. Начинают с доли углерода, а затем прописывают меньшие доли легирующих добавок.

Спокойные, полуспокойные и кипящие

Стали классифицируют по степени раскисления. Чем меньше в сплаве газов, тем равномернее его структура и чище состав. Спокойные стали содержат меньше закиси железа, а кипящие — большое количество оксидов. Пузырьки оксида углерода ухудшают прочностные и пластичные свойства металла. Спокойные стали стабильны, их используют в изделиях ответственного назначения. Полуспокойные марки — среднепрочные, их задействуют как конструкционный материал. Кипящие разрушаются, трескаются и плохо поддаются сварке, поэтому и стоят меньше. Они разрешены в простых конструкциях.

Строительные

Низколегированные сплавы обычного качества. Они обладают удовлетворительными механическими свойствами, выдерживают статические и динамические нагрузки, пригодны к сварке.

Инструментальные

Высокоуглеродистые или высоколегированные сплавы. Их используют для изготовления штампов, режущего и измерительного инструмента. Разделяют соответственно на штамповые металлы, сплавы для режущего и измерительного инструмента. Названия группы зависит от назначения сталей. К примеру, штамповую сталь используют для изготовления инструментов, которыми будут обрабатывать металлы под давлением.

Конструкционные

Стали с низким содержанием марганца. Их делят на цементируемые, высокопрочные, автоматные, шарико-подшипниковые и другие. Используют для изготовления узлов механизмов или конструкций.

Стали специального назначения

Эти сплавы относятся к конструкционным сталям. Они бывают жаропрочными, жаростойкими, кислотоупорными, криогенными, электротехническими, парамагнитными, немагнитными.

Производство стали

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств. Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ. Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства. Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки. Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Выплавка стали в электропечи

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

Схема мартеновской печи

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.
Читайте также  Как весело провести время с парнем

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей. Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью. Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Способы производства стали

Технологический процесс производства углеродистой стали можно разделить на два этапа. Сначала из руды выплавляется чугун, который на следующем этапе перерабатывается в сталь. При сокращении в расплавленном чугуне вкраплений углерода и иных примесей, которые в процессе плавления сгорают или отделяются в форме шлака. В качестве исходного сырья для изготовления стали используется чугун, металлолом, железные руды, также в расплавленный металл могут быть добавлены флюсы и ферросплавы. Существуют три принципиально отличающихся технологии выпуска: электрическое плавление, конвертерный метод и плавка в мартеновских печах, последний способ на сегодняшний день считается наиболее эффективным и распространенным, а производимая сталь по своему качеству выше, чем при конверторной плавке.

Мартеновский способ.

Масса загрузки мартеновских печей доходит до тысячи тонн, внутреннее пространство выполняется в виде камеры, вытянутой по горизонтальной оси и обкладывается специальным выдерживающим высокую температуру кирпичом. В верхнем отделении проложены каналы, связывающие камеру с теплообменными устройствами (регенераторами). Нижняя часть конструкции, имеет форму ванны и называется подом. Для усиления эффекта в регенераторах производится подогрев газа. В мартеновской печи плавится твердый или жидкий чугун с добавлением железной руды или стального металлолома. Углерод сгорает под воздействием высокой температуры, окисляющиеся под воздействием кислородного дутья примеси преобразуются в шлак и удаляются с поверхности расплавленного металла, сера удаляется при помощи содержащего известь флюса. За время плавления, занимающее от четырех до восьми часов, имеется возможность добавления в состав металла дополнительных компонентов, для получения на выходе легированной стали. В процессе плавления производится отбор образцов металла для химического анализа, при получении желаемых параметров расплавленная сталь выпускается в ковш, откуда разливается формам. Из стали произведенной по этому методу производят монорельсовые и подкрановые балки, фермы мостов и цеховых перекрытий, железнодорожные рельсы и арматуру.

Конверторный способ.

Печь конвертерная представляет вращающийся относительно горизонтальной оси стальной футерованный корпус грушевидной формы. При помощи ковша внутренняя часть конвертера наполняется расплавленным чугуном, через отверстия в корпусе под давлением нагнетается воздушно кислородная смесь образуя в сплаве закись железа, взаимодействующую с нежелательными в сплаве элементами, преобразовывает их в шлак или выгорающие оксиды. Метод считается экономичным и отличается высокой производительностью, занимает от пятнадцати до тридцати минут, емкость конвертерных печей достигает до шестисот тонн, полученный металл используется для производства стальных листов, балок, швеллеров, катанки и проволоки.

Электроплавка.

Электроплавильные дуговые или индукционные печи служат для получения сталей высокого качества, в печь загружают руду, скрап или стальной сплав после конвертера или из мартеновской печи, в процессе добавляются легирующие металлы. Для нагрева используется электрическая дуга между расплавом и специальными электродами. Выплавка по этой технологии позволяет получать сталь очень хорошего качества, но имеет высокую себестоимость и низкую производительность, как правило, применяются печи до двухсот тонн. В связи с этим часто применяются разные типы печей, сначала сплав готовят в конвертерной печи или мартене, а затем подается в электропечь, где доводится до более высокого качественного уровня.

Уважаемые партнеры, клиенты, заказчики. Для оперативной обработки вашей заявки указывайте в заказе каким образом необходимо подготовить металл к отгрузке. Нужно ли порезать его для транспортировки, на какую длину? Если заказываете доставку нашими силами, укажите по какому адресу и в какой город, какой транспортной компанией или каким отдельным видом транспорта необходимо произвести отправку приобретаемого вами металла.

Производство стали

Сталь – это железоуглеродистый сплав, который содержит около 1,5% углерода, если его содержание увеличивается, то значительно повышается хрупкость и твердость стали. Основной исходный материал для производства стали — стальной лом и передельный чугун.

Содержание примесей и углерода в стали намного ниже, чем в чугуне. Поэтому суть металлургического передела в сталь чугуна – это уменьшение содержания примесей и углерода за счет их избирательного окисления и превращения в газы и шлак в процессе плавки.

В первую очередь окисляется железо при взаимодействии кислорода и чугуна в сталеплавильных печах. Вместе с железом окисляются фосфор, кремний, углерод и марганец. Оксид железа, который образуется при высоком температурном режиме, отдает свой кислород в чугуне более активным примесям, при этом окисляя их.

Производство стали осуществляется в три стадии.

Первая стадия производства стали — расплавление породы

Происходит расплавление шихты и нагревается ванна жидкого металла. Температура металла невысокая, энергично окисляется железо, образуется оксид железа и окисляются примеси: марганец, кремний и фосфор.

Самая важная задача этой стадии производства стали – это удаление фосфора. Для этого нужно проводить плавку в основной печи, где шлак будет содержать оксид кальция (CaO). Фосфорный ангидрид — P2O5 будет образовывать с оксидом железа непрочное соединение (FeO)3 x P2O5. Оксид кальция – как более сильное основание, по сравнению с оксидом железа, и при не очень высоких температурах связывает P2O5 и превращает его в шлак.

Для того чтобы удалить фосфор, нужна не очень высокая температура, ванны шлака и металла, достаточное содержание в шлаке FeO. Для того чтобы увеличить в шлаке содержание FeO и ускорить окисление примесей добавляется в печь окалина и железная руда, наводя железистый шлак. Постепенно, по мере удаления из металла в шлак фосфора, содержание в шлаке фосфора повышается. Так что нужно убрать данный шлак с зеркала металла, а затем заменить его новым со свежими добавками оксида кальция.

Вторая стадия производства стали — кипение

Происходит кипение металлической ванны. Начинается постепенно, по мере нагрева до высоких температур. При увеличении температуры интенсивней происходит реакция окисления углерода, протекающая с поглощением теплоты:

Для того чтобы окислить углерод вводят в металл небольшое количество окалины, руды или вдувают кислород. При реакции углерода с оксидом железа, пузырьки оксида углерода выводятся из жидкого металла, и происходит «кипение ванны». Во время «кипения» сокращается в металле содержание углерода до требуемого количества, температура выравнивается по объему ванны, немного удаляются неметаллические включения, которые прилипают к всплывающим пузырькам CO и газы, которые проникают в пузырьки CO. Все это ведет к увеличению качества металла. А значит, данная стадия — основная в процессе производства стали.

Создаются условия для того чтобы удалить серу. В стали сера находится в форме сульфида — FeS, растворяемого в основном шлаке. Чем будет выше температурный режим, тем больше сульфида железа растворится в шлаке и будет взаимодействовать с оксидом кальция CaO:

Соединение, которое образуется – CaS, растворяется в шлаке, но при этом не растворяется в железе, так что сера выводится в шлак.

Третья стадия производства – раскисление стали

Происходит восстановление оксида железа, который растворен в жидком металле. Увеличение содержания кислорода в металле при плавке необходимо для осуществления окисления примесей, но в уже готовой стали кислород является вредной примесью, потому что понижает механические свойства стали.

Раскисление сталь осуществляется двумя методами: диффузионным и осаждающим.

Диффузионное раскисление происходит благодаря раскислению шлака. В измельчённом виде ферросилиций, ферромарганец и алюминий переносят на поверхность шлака. Эти раскислители, восстанавливают оксид железа, и при этом сокращают содержание его в шлаке. А значит, оксид железа, который растворен в стали переходит в этот шлак. Оксиды, которые образуются при таком процессе, остаются в шлаке, а железо, уже в восстановленном виде, переходит в сталь, а в ней уменьшается содержание неметаллических включений и увеличивается ее качество.

Осаждающее раскисление происходит благодаря введению в жидкую сталь растворимых раскислителей (ферросилиция, ферромарганца, алюминия), которые содержат элементы, обладающие более высоким сродством к кислороду, в сравнении с железом. В конце концов, после раскисления восстанавливается железо и создаются оксиды: SiO2, MnO, Al2O5, имеющие меньшую плотность,в сравнении со сталью, и выводятся в шлак.

В зависимости от уровня раскисления можно выплавлять такие виды стали: — кипящие – не полностью раскислены в печи. Раскисление такой стали продолжается в изложнице при затвердевании слитка, за счет взаимодействия углерода и оксида железа: FeO + C = Fe + CO.

Оксид углерода, который образовался, выводится из стали, обеспечивая удалению водорода и азота из стали, газы выводятся в виде пузырьков, приводя её к кипению. Кипящая сталь не имеет неметаллических включений, поэтому отличается высокой степенью пластичности.

  • спокойные — получается при абсолютном раскислении в ковше и в печи.
  • полуспокойные – отличаются промежуточной раскисленностью между кипящей и спокойной сталями. Частично раскисляется в ковше и в печи, а частично – в изложнице, за счет взаимодействия углерода и оксида желез, которые содержатся в стали.

Легирование стали происходит введением чистых металлов или ферросплавов в определенном количестве в расплав. Легирующие элементы, которые имеют меньше сродство к кислороду, чем у железа (Co, Ni, Cu, Mo), при разливке и плавке не окисляются, и поэтому их вводят в какое-либо время плавки. Легирующие элементы, которые имеют большее сродство к кислороду, чем у железа (Mn, Si, Cr, Al, Ti , V), в металл вводят после раскисления или вместе с ним на окончательном этапе плавки, а иногда и в ковш.

Читайте также  Чем закончился сериал «Остаться в живых»

Оборудование для производства и выплавки стали

Для производства стали на сталелитейных заводах должно быть специальное оборудование:

Кислородные конверторы

  • аргоновое хозяйство;
  • детали конвертеров (сосуды и несущие кольца конвертера);
  • фильтрация пыли;
  • отсасывание конвертерного газа;

Электропечи

  • индукционные печи (изготовление периферий);
  • дуговые печи (изготовление энергетических опор, стальных частей для горнов, охлаждение электродов);
  • загрузочные бадьи;
  • скрапное отделение;
  • частотные преобразователи для индукционного нагревания;

Вторичная металлургия

  • обессеривание стали;
  • гомогенизация стали;
  • электрошлаковый переплав;
  • создание вакуума;

Ковшовая технология

  • оборудование LF типа;
  • оборудование SL типа;

Ковшовое хозяйство

  • крышки литейных и разливочных ковшей;
  • литейные и разливочные ковши;
  • шиберные затворы;

Оборудование непрерывной разливки стали

  • разливочная поворотная станина для манипуляции с промежуточными ковшами и ковшами;
  • сегменты оборудования непрерывной разливки;
  • вагонетки промежуточных ковшей;
  • аварийные лотки и сосуды;
  • промежуточные ковши и подставки для складывания;
  • пробочный механизм;
  • передвижные мешалки чугуна;
  • охлаждающее оборудование;
  • выводные участки непрерывной разливки;
  • металлургические рельсовые транспортные средства.

Таким образом производство стали — это сложный технологический процесс, сочетающий базовые химические принципы получения железа, в сочетании с технологиями отливки стали.

Как изготавливают сталь

В статье представлен краткий обзор процесса выплавки стали, его составляющие и типы.

Основы технологии получения стали. Сталь требуемого химического состава получают из передельного чугуна и соответствующих шихтовых материалов при различных способах ведения плавки, окисляя и удаляя примеси чугуна: Si, Р, S и др.

Исходными материалами для выплавки стали, кроме передельного чугуна, являются: стальной лом, ферросплавы, железная руда и флюсы. Получают сталь в конвертерах, мартенах, электропечах.

Конвертерный способ получения стали заключается в том, что через расплавленный чугун, находящийся в конвертере, продувается воздух, обогащенный кислородом. Так как в процессе окисления стали получается металл, насыщенный закисью железа, то для улучшения его свойств в расплавленную сталь вводят раскислители Si, Мn, А1 и др.

Конвертер представляет собой печь грушевидной формы, вращающуюся во круг горизонтальной оси. При заполнении печи расплавленным чугуном конвертер находится в наклонном положении. Затем при помощи поворотного механизма его переводят в вертикальное положение и через отверстие в днище продувают воздух или кислород. Образующаяся вначале закись железа FeO, растворяясь в металле, вступает в реакцию с кремнием, марганцем, углеродом и фосфором, образуя Si02, МnО и фосфорные соединения, связываемые шлаком и СО, который, сгорая, удаляется с газом.

В зависимости от состава исходного сырья и футеровки различают два вида конвертерного способа получения стали: кислый (бессемеровский) и основный (томасовский). При бессемеровском способе конвертер футеруют кислым огнеупором (динасом), при томасовском — основным (обожженным доломитом). В качестве флюса вводят известь.

Мартеновский способ получения стали заключается в выплавке ее на поду пламенной печи из передельного чугуна и стального лома с добавкой руды и флюсов. Как и конвертерный, мартеновский способ выплавки стали может быть кислым и основным.

Мартеновская печь представляет собой агрегат, нагреваемый сгорающим газообразным или жидким топливом, на поду которого находится расплавленный металл. Для повышения теплового эффекта газ и воздух предварительно нагревают в регенераторах, для дутья применяют кислород.

Кислородно-конвертерный способ имеет преимущество перед мартеновским. Кислородно-конвертерный процесс с верхней продувкой кислорода обеспечивает высокое качество стали.

Конвертерная и мартеновская стали могут быть кипящими и спокойными. Кипящая сталь менее однородна, чем спокойная, подвергающаяся перед отливкой в изложницы раскислению А1 или Si. Поэтому из кипящей стали не изготовляют ответственные сварные конструкции, а также конструкции, работающие в условиях повышенных температур, и др. Кипящая сталь хорошо поддается обработке под давлением.

Электровыплавка стали состоит из окисления примесей чугуна и раскисления стали от закиси железа. Фосфор и сера при этом почти целиком переходят в шлаки. Для полного раскисления закиси железа в конце процесса вводят ферросилиций, а также легирующие примеси для получения особых сортов сталей.

Современные электропечи бывают дуговые и индукционные. Сталь разливают обычно в металлические формы, называемые изложницами, двумя способами — сифонной разливкой, при которой металл поступает в изложницы снизу через центральный литник, и заливкой сверху.

В последнее время применяют непрерывную разливку стали. При этом сталь попадает в охлаждаемую изложницу с временным дном (кристаллизатором) из куска металла. Жидкий металл при непрерывной заливке затвердевает в кристаллизаторе у стенок и дна, образуя слиток, состоящий из корочки металла и жидкой внутренней части, непрерывно движущийся вниз, в зону вторичного охлаждения. Затвердевший слиток разрезают на куски, поступающие в прокатные станы. При непрерывной разливке стали повышается выход металла, увеличивается производительность труда, не требуется изложниц, исключается необходимость в крупных обжимных станах, блюмингах и слябингах.

Огромное значение для качества металлов имеет их чистота и структура слитка. Один из наиболее эффективных способов рафинирования стали — электрошлаковый переплав (ЭШП) электродов в водоохлаждаемой металлической изложнице (кристаллизаторе) — разработан под руководством академика Б. Е. Патона. Этот способ получения чистой стали заключается в следующем.

В охлаждаемой проточной водой металлической изложнице расплавляется твердый флюс, в который подается электрод. Электрическая цепь замыкается через электрод, расплавленный шлак и поддон кристаллизатора. Источником тепла служит в этом процессе электрическое сопротивление шлаковой ванны. Капли, открывающиеся от оплавляемого конца электрода, проходят через шлак, образуя слиток чистой стали весом до 40 т. Таким способом изготовляют около ста марок стали, обладающих высокими и специальными свойствами (кислотостойкая, жаропрочная и др.).

Термическая обработка стали. Термическая обработка стали заключается в улучшении ее физико-механических свойств, основанных на изменении структуры при помощи нагрева и охлаждения.

Различают следующие виды термической обработки стали: закалку, отпуск, отжиг, нормализацию.

Закалкой называют термическую обработку, при которой сталь нагревают выше верхней критической точки на 30-50° С (доэвтек-тоидные стали) или выше нижней критической точки на 30-50° С (заэвтектоидные стали) с последующим быстрым охлаждением в воде, масле или другой среде. Цель закалки — повысить твердость стали. Если требуется только поверхностная твердость, применяют высокочастотную закалку, которая состоит в нагреве поверхности металлических деталей током высокой частоты с последующим ее быстрым охлаждением.

В зависимости от скорости охлаждения (что зависит от охлаждающей среды) закаленная углеродистая сталь имеет мартенситную, троститную и сорбитную структуры. Самую высокую твердость имеет закаленная сталь с мартенситной структурой, несколько ниже — с трооститной и еще ниже — с сорбитной.

После закалки сталь подвергают отпуску, цель которого — уменьшить внутренние напряжения, полученные в результате закалки.

Процесс отжига заключается в нагреве стальных изделий до температуры на 20-30° С выше верхней критической точки, выдержке при этой температуре с последующим медленным охлаждением в той же печи.

Отжиг имеет целью снизить твердость стали, улучшить обрабатываемость ее на станках, повысить вязкость и пластичность. Нормализация стали — разновидность отжига, заключающаяся в нагреве ее до температуры на 30-50° С выше верхней критической точки с охлаждением на воздухе.

Нормализация создает мелкозернистую и однородную структуру стали, повышает ее твердость и прочность, но уменьшает пластичность.

Цементация — насыщение поверхностного слоя стали углеродом при нагреве до 850-900° С в специальной среде. Глубина цементационного слоя достигает 1,5-2 мм. С целью повышения прочности цементационного слоя изделия подвергают в дальнейшем термической обработке — закалке и отпуску. Задача цементации — получить твердую поверхность при вязкой сердцевине.

Упругая и пластическая деформация стали. Сталь под воздействием внешних усилий изменяет свою первоначальную форму (деформируется), приобретая новые свойства. Деформация стального образца будет упругой, если после удаления внешних усилий он принимает первоначальную форму, и пластической, или остаточной, если форма его при тех же условиях не восстанавливается. При этом в местах деформации сталь упрочняется, но теряет пластичность.

Одним из видов упрочнения стали под воздействием внешних сил в холодном состоянии является наклеп. Повышение прочности наклепанной стали объясняется образованием уплотненных поверхностей сдвига, а также дроблением кристаллов, повышающих сопротивление деформации стали. При дальнейшем повышении деформирующих усилий, превышающих предел прочности, сталь разрушается. Наклеп используют для улучшения свойств сталей с пониженным пределом текучести; отжигом наклеп ликвидируется.

Изменение свойств металла во времени вследствие внутренних процессов, обычно протекающих замедленно при комнатной температуре и более интенсивно при повышенной, называется старением металла.

В обычной углеродистой стали процесс старения происходит медленно и выявляется лишь в таких сооружениях, как мостовые фермы через 70-100 лет. Добавляя в металлический сплав алюминий, ванадий, титан, хром и другие вещества, процесс старения можно замедлить.

Изготовление стальных изделий давлением. Для изготовления стальных изделий давлением используют способность металла изменять форму при пластических деформациях. При этом изменяется не только форма металла, но и его структура, а значит, и свойства.

Форму металла изменяют прокаткой, волочением, ковкой, штамповкой, прессованием, гибкой, взрывом.

Подготовка стальных слитков к изготовлению сортовой стали заключается в предварительном нагревании их в методических печах или нагревательных колодцах.

Прокатка основана на пластическом свойстве стали изменять свою форму без разрушения под действием внешнего давления. Применяют горячую и холодную прокатку. Углеродистые стали прокатывают в интервале температур 800-1200° С на прокатных станах между вращающимися валками.

Из сталей различного качества и состава изготовляют профили, являющиеся элементами сварных или клепаных строительных конструкций.

В строительных конструкциях наибольшее применение имеют листовая, сортовая, фасонная стали.

К числу сортовых сталей относят круглую, квадратную, полосовую широкополосную, тонколистовую, толстолистовую, волнистую, угловую, двутавровую, швеллер, периодического профиля (арматурная сталь) и др..

Прокаткой и штамповкой изготовляют также специальные профили; применяемые для оборудования подвижного транспорта оконные профили для промышленного строительства и др. Для строительной промышленности особое значение имеет изготовление рациональных облегченных профилей .

Волочение — это протягивание холодного металла через глазок протяжного стана. Холодное волочение снижает вязкость металла и его пластичность. Для повышения пластичности тянутый металл подвергают отжигу, а для снятия окалины травят серной кислотой с последующей промывкой в щелочном растворе.

Волочением получают калиброванные и некалиброванные металлические стержни и проволоку с круглой или другой формой сечения, которые служат готовыми деталями в строительстве и машиностроении или материалом для изготовления арматуры, гвоздей, болтов, шурупов и др.

Ковка — это придание требуемой формы стальному слитку или заготовке из проката деформированием нагретого металла. Ковкой также изменяют структуру металла, улучшая его свойства.

Штамповка производится в формах-штампах, что обеспечивает точное соблюдение размеров изделия.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: