Испарение как явление

Что такое испарение и как оно происходит?

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Что такое испарение

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).

Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

Испарение как явление

Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарение и кипение.

Испарение

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Например, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

Конденсация

Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

Конспект урока по физике в 8 классе «Испарение. Конденсация».

Испарение

О чем эта статья:

Испарение: что это за процесс

Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.

Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.

Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.

  • Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
  • Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.

Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.

Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .

Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.

Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:

Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:

Испарение Кипение
При любой температуре, с поверхности жидкости При определенной температуре, во всем объеме жидкости

Испарение на уровне молекул

Давайте вспомним об особенностях разных агрегатных состояний вещества.

Агрегатные состояния

Свойства

Расположение молекул

Расстояние между молекулами

Движение молекулы

сохраняет форму и объем

в кристаллической решетке

соотносится с размером молекул

колеблется около своего положения в кристаллической решетке

близко друг к другу

малоподвижны, при нагревании скорость движения молекул увеличивается

занимают предоставленный объем

больше размеров молекул

хаотичное и непрерывное

Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.

Читайте также  Как быть хорошим продавцом

В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.

Интенсивность испарения

Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.

Интенсивность испарения зависит от следующих факторов:

  • Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться :)
  • Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
  • Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
  • Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.

Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.

Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.

По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.

Насыщенный пар

Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.

Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.

На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.

Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.

Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.

Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.

Испарение в жизни

И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.

Испарение в организме человека и животных

Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.

Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.

Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.

При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.

При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.

У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶

Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.

Испарение у растений

Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.

Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.

Испарение в природе и окружающей среде

Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.

Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.

Испарение в промышленности и быту

С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.

В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.

Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.

Испарение — определение, условия и особенности процесса

Суть понятия

Основное определение испарения — переход из жидкости в газ. Это термодинамический процесс, обусловленный хаотичным движением молекул тел в определённых агрегатных состояниях. Благодаря его существованию количество воды, масла, эфира, бензина или любого другого жидкого вещества в незакрытой ёмкости будет непрерывно уменьшаться с течением времени.

С точки зрения физики, испарение можно объяснить разницей температур на грани фазового перехода — жидкость обычно холоднее окружающего воздуха. Если других внешних влияний нет, испарение происходит медленно. Молекулы покидают воду в результате диффузии, переходя через полупроницаемую для жидкостей, но непроницаемую для газообразных веществ поверхность раздела фаз массового потока.

Основное отличие испарения от других форм парообразования заключается в том, что оно происходит только с поверхности. Атомы и молекулы меняют агрегатное состояние постепенно, испаряясь небольшими слоями. Впрочем, несмотря на это, с течением времени вся жидкость может постепенно испариться.

Другая отличительная черта процесса — возможность разной направленности тепловых потоков. Они могут идти:

  • из толщи жидкости к поверхности, а затем в воздух;
  • только из жидкости к поверхности;
  • к поверхности из воды и газовой среды одновременно;
  • к площади поверхности только от воздуха.

Направленность потоков зависит от температуры воздуха, фазового раздела и самой жидкости. Соотношения этих трёх величин по-разному учитываются в формуле испарения. От них зависит его скорость, направленность теплообмена и другие факторы. Для вычисления величины используются также экспериментальные коэффициенты, полученные путём опытов. Они уникальны для каждого вещества или смеси и обусловлены их химическим составом.

Испарение на молекулярном уровне

В жидких веществах молекулы расположены почти вплотную друг к другу, но не связаны, как в твёрдых субстанциях. Из-за этого они находятся в непрерывном движении, случайным образом сталкиваются друг с другом, меняют направление и скорость движения. Частицы, оказавшиеся близко к поверхности, со временем могут покинуть её, проникнув через зону фазового перехода.

Таким образом, испарение обусловлено непрерывным движением молекул. Если они обладают достаточной кинетической энергией и скоростью, то часть из них может сорваться с поверхности воды, преодолевая притяжение соседних частиц. Некоторые отражаются и возвращаются, другие вырываются в газовую среду и навсегда покидают вещество. Процесс повторяется с новыми (теперь тоже поверхностными) частицами, пока вся жидкость не станет газообразной.

В процессе жидкость теряет часть своей энергии, из-за чего снижается также её температура — это обусловлено тем, что первыми её покидают самые быстрые (а значит, и обладающие наибольшей кинетической силой) молекулы. В результате наблюдается явление, называемое испарительным охлаждением жидкости. Этим объясняется то, что человеку быстро становится холодно в мокрой одежде, даже если ту облить тёплой водой. При комнатной температуре явление проявляется слабо, поскольку жидкость компенсирует теряемое тепло теплообменом с окружающим воздухом.

Отличия от кипения и сублимации

Испарение нередко путают с кипением. Оба процесса являются разновидностями парообразования, то есть превращения жидкого вещества в газообразное. Разница состоит в том, что закипание — гораздо более активный и быстрый процесс, смена агрегатного состояния при котором наблюдается невооружённым глазом.

Не менее важное различие состоит в том, что испарение происходит всегда, а кипение — только при достижении жидкостью определённой температуры. Точная цифра меняется и зависит от характера вещества — для воды она составляет 100 °C, для рафинированного масла — 227 °C, для гелия — -269°C, вольфрама — 5680 °C.

Кипение — постоянный процесс, обусловленный определёнными закономерностями в движении молекул. Их отрыв от поверхности при этом явлении происходит постоянно и не зависит от случайностей при движении. Кроме того, смена агрегатного состояния при кипении происходит с жидкостью по всей толще, а не только на поверхности. Это можно заметить на практике — при закипании воды в её толще образуются пузырьки, поднимающиеся на поверхность из-за разницы масс.

Кипение всегда сопровождается испарением, потому во многом они взаимосвязаны. Особняком стоит явление сублимации — перехода вещества из твёрдого состояния в газообразное, минуя жидкую стадию. Это явление сопровождается разрывом молекулярных связей в результате внешнего подвода энергии (обычно через нагревание).

В природе сублимация наблюдается редко. Иногда её можно наблюдать при быстром таянии льда — например, замёрзшая мокрая одежда при потеплении мгновенно высыхает.

Факторы, влияющие на скорость процесса

Учёные заметили, что процесс происходит по-разному при изменяющихся свойствах жидкости и условиях внешней среды. Они выделили основные факторы, влияющие на испарение:

  • Химические и физические свойства вещества, его тип и класс. Большое значение имеет его плотность — чем ближе расположены молекулы, тем труднее им преодолеть общее притяжение и оторваться, вырвавшись в газовую среду. Из-за этого свойства спирты и алкоголь улетучиваются гораздо быстрее, чем обычная вода.
  • Температура. В отличие от кипения, испарение происходит при минусовых показателях термометра, но она всё ещё влияет на его скорость. При повышении температуры частицы двигаются быстрее, при понижении — медленнее. Соответственно, увеличивается или уменьшается их шанс покинуть жидкую среду и перейти в газообразную. Из-за испарительного охлаждения естественная скорость процесса со временем снижается, если нет дополнительного нагревания.
  • Размеры поверхности. Зависимость объясняется тем, что чем обширнее площадь соприкосновения у жидкой и газовой среды, тем больше молекул перелетят из одной в другую. Роль играет также обратная конденсация молекул — если налить их в ёмкость с узким горлышком, пар будет оседать на её стенках и стекать обратно в толщу воды. Эту особенность явления часто эксплуатируют при охлаждении различных веществ в промышленности и бытовых целях.
  • Скорость ветра. Движение воздуха «сдувает» молекулы с поверхности, увеличивая их кинетическую энергию, а также передвигает саму воду, увеличивая площадь поверхности за счёт ряби, волн, слетевших капелек и струй. Потому наличие ветра делает испарение более интенсивным. Это можно легко заметить, подув на ложку с горячей водой или чаем — так он остынет гораздо быстрее.
  • Атмосферное давление. Чем оно ниже, тем быстрее жидкости испаряются. Показатель влияет и на температуру кипения — например, при показателе барометра в 0,5 АТМ вместо стандартного 1 вода закипает при 82 °C. В природе это явление можно наблюдать, если отправиться в горы.

Факторы, способные повлиять на скорость испарения, известны большинству из повседневных примеров. Далёкие предки современных людей применяли их для сушки одежды, охлаждения жидкостей и других задач.

Роль явления

Испарение и кипение — очень распространённые физические явления, без которых стала бы невозможной нормальная жизнь на земле. Люди ежедневно сталкиваются с ним в быту, а также используют в промышленности, технике, энергетике и других сферах жизнедеятельности. Кроме того, фазовый переход жидкости и газа играет важную роль в существовании живых организмов и экосистеме планеты в целом.

Читайте также  Как изменить ширину столбца в Excel

В организме человека, животных и растений

Испарение играет важную роль в процессе саморегуляции температуры тела человека и большинства млекопитающих. Поскольку чрезмерное тепло для них вредно или даже смертельно (при 42,2 °C в крови происходит свёртывание белка, что приводит к быстрой смерти), в процессе эволюции организм разработал систему самоохлаждения — потоотделение. Она задействуется при пребывании в жарких или душных помещениях, тяжёлом физическом труде, болезнях.

Через поры на коже выделяется жидкость, которая затем быстро испаряется. Это позволяет быстро избавиться от лишней энергии и охладить тело, нормализовав температуру. Некоторые животные инстинктивно пытаются усилить этот процесс — например, собаки в жаркую погоду открывают рот и высовывают язык.

Представители флоры обладают похожим защитным механизмом. Чтобы не перегреться на солнце, они запускают процесс испарения ранее поглощённой воды, тем самым охлаждаясь. Поэтому в летнюю пору садоводы усиленно поливают культурные растения, предотвращая их засыхание или выгорание в самые жаркие дни.

В природе и окружающей среде

Роль испарения и конденсации (превращение газа обратно в жидкость) в природе трудно переоценить. Они лежат в основе естественного круговорота воды, который обеспечивает экосистему необходимыми питательными веществами, спасает водоёмы от пересыхания, а животных и растений — от вымирания. Только благодаря этому явлению жизнь на земле может существовать в нынешнем виде.

Испарение большого количества воды с поверхности морей, океанов, рек и озёр приводит к появлению дождевых туч, которые разносят влагу по всему миру и питают окружающую среду. Это же явление препятствует затоплению и заболачиванию участков (особенно зимой, когда тают снега и льды), возвращая лишнюю воду обратно в мировой океан.

Благодаря испарению возможно такое явление, как запахи. Животные используют его во множестве сфер своей жизни — от охоты и поиска пищи до размножения и общения. Оно также помогает представителям фауны распознавать опасность в виде хищников или огня и дыма, обнаруживать токсичные вещества в атмосфере.

В быту и промышленности

Испарение широко применяется в бытовой жизни людей, а также в создании сложных механизмов и промышленных машин. Некоторые примеры использования этого процесса:

  • создание охладителей для двигателей, ядерных реакторов, спускаемых аппаратов в космической технике;
  • сушка различных вещей — от одежды до производственного сырья;
  • запчасти бытовых и промышленных холодильников;
  • кондиционирование и очищение воздуха;
  • энергетическая промышленность;
  • очистка различных веществ на молекулярном уровне;
  • охлаждение воды;
  • дегидрация продуктов для увеличения срока хранения, создание диетической еды путём вывода лишних веществ;
  • готовка на пару в кулинарии;
  • стимуляция процессов при химических опытах;
  • декор и дизайн одежды — например, сублимационная фотопечать;
  • оздоровительные процедуры — бани, криотерапия, косметические техники;
  • медицинские ингаляции — приготовление насыщенных полезными веществами газов основано на процессе испарения.

Промышленная техника, использующая испарение для работы, строится по одной и той же схеме. В ней максимально увеличивается площадь поверхности жидкости, чем обеспечивается наилучший теплообмен с газовой средой. Это достигается за счёт разделения воды на отдельные струи и капли, а также образования тонких плёнок вещества на внутренней поверхности и насадках. Газ в приборах разгоняется, что также улучшает эффективность охлаждения.

Испарение: определение, условия и особенности процесса

Содержание:

Испарением в физике (впрочем, и не только в ней) называют фазовый переход любой жидкости в парообразное или газообразное состояние. Простейший пример, с которым сталкивается каждый человек – испарение воды, когда мы ее сильно нагреваем, к примеру, делая себе чай, из нее идет пар. Пар этот и есть та самая вода, которая из жидкого состояния перешла в парообразное. Особенности процесса испарения разных жидкостей хорошо изучены физиками, а само испарение широко применяется в промышленности и в быту, встречается также и в природе.

Определение

Классическое определение звучит так: испарение – это переход из жидкости в газ. При этом это термодинамический процесс, то есть такой, который происходит под воздействием температурных колебаний. Именно вследствие испарения количество любой жидкости в любой незакрытой емкости будет постепенно уменьшаться.

Какие же причины испарения? Физика объясняет это явление разницей температур на грани фазового перехода: жидкость обычно несколько холоднее окружающего воздуха. Если нет каких-то внешних влияний, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость вследствие диффузии, они переходят через полупроницаемую для жидкостей, но непроницаемую для газовых веществ поверхность раздела фаз массового потока.

Важно знать, что испарение всегда происходит только с поверхности жидкости, в этом основное отличие испарения от других форм парообразования. Атомы и молекулы испаряются не все сразу, а небольшими слоями, постепенно. Но, разумеется, со временем они могут испариться полностью.

Еще одной интересной особенностью испарения является тот факт, что оно может иметь разную направленность тепловых потоков. Они могут идти:

  • из глубины жидкости к поверхности, а затем в воздух,
  • только из жидкости к поверхности,
  • к поверхности из воды и газовой среды одновременно,
  • к площади поверхности только от воздуха.

Направленность тепловых потоков при испарении зависит от характера жидкости, температуры окружающего воздуха и фазового раздела. Эти три величины и их соотношение формируют формулу испарения.

Испарение на молекулярном уровне

В жидкостях молекулы, хотя и расположены близко друг к другу, тем не менее, они не имеют твердой связи между собой, как в твердых телах. Поэтому они находятся в непрерывном движении, в ходе которого часто сталкиваются друг с другом, меняют свое направление и скорость своего движения. Часть молекул, которые оказались близко к поверхности могут и вовсе покинуть жидкость, если проникнут через зону фазового перехода. И тогда произойдет испарение. Как видите, обязательным условием для этого физического процесса является непрерывное движение молекул в жидкости. Если движущаяся молекула обладает достаточной кинетической энергией и скоростью, то она может преодолеть притяжение соседних частиц и вылететь на поверхность.

Почему же испарение усиливается при нагревании жидкости? При нагревании движение молекул в воде, или другой жидкости заметно ускоряется, и все больше молекул начинают гонять аки «Шумахеры», в результате вылетая на поверхность.

При этом в какой-то момент может произойти такое явление как «испарительное охлаждение жидкости», когда нагретую жидкость уже покинули все самые быстрые молекулы и происходит снижении температуры самой жидкости. В частности это явление объясняет, почему человеку, даже облитому теплой водой постепенно будет становиться холодно – все быстрые молекулы этой теплой воды испарятся, а оставшаяся вода быстро охладится без своих «молекул-гонщиков».

Кипение гейзеров, отличный пример испарения в природе.

Испарение и кипение: в чем отличие?

В начале статьи мы писали, что испарение особенно заметно при кипении воды, когда мы, к примеру, делаем себе чай. На самом деле испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в речке или озере непрерывно испаряется, хотя мы этого и не замечаем. Что же касается кипения, то оно является, по сути, катализированным испарением, когда сам процесс становится заметным невооруженным глазом и во много раз ускоренным.

Но кипение происходит только при определенных температурах, причем в разных жидкостях разные температуры кипения (например, у воды температура кипения 100 °C), в то же время испарение происходит всегда, независимо от температуры жидкости. В этом и заключается их отличие.

Факторы, влияющие на скорость испарения

Учеными выделены такие основные факторы, которые имеют влияние на скорость испарения:

  • Химические и физические свойства жидкости, характер связей между молекулами, плотность вещества. Чем ближе друг к другу расположены молекулы жидкости, тем им труднее набрать нужную скорость, чтобы вылететь и тем ниже скорость испарения, и тем больше температура кипения. К слову спирты и алкоголь улетучиваются гораздо быстрее, нежели просто вода.
  • Температура. В отличии от явления кипения, испарение жидкости может происходить даже при минусовых температурах жидкости. Но все равно при понижении температуры скорость движения частиц уменьшается, и как следствие уменьшается скорость испарения.
  • Размер поверхности. Тут все просто, чем больше площадь испарения, то есть площадь соприкосновения жидкости с воздухом, тем большей будет скорость испарения.
  • Скорость ветра также может влиять на скорость испарения в природных условиях, так как быстрое движение воздуха «сдувает» молекулы с поверхности, увеличивая их скорость и кинетическую энергию.
  • Атмосферное давление, чем оно ниже, тем быстрее испаряется любая жидкость.

Роль испарения

И испарение, и кипение распространенные физические явления в нашей жизни. Мы постоянно сталкиваемся с ними в нашем быту, испарение активно используется в промышленности и природных условиях, как именно, читайте далее.

Испарение в организме человека, в животных и растениях

Испарение играет важную роль процессе саморегуляции температуры тела человека, как впрочем, и почти всех млекопитающих. Так как чрезмерный перегрев тела вредный, а порой и смертельный (так при температуре тела более 42,2 °C в крови человека происходит свертывание белка, что приводит к смерти) организм имеет защитный механизм для предотвращения перегрева – потоотделение. Например, когда мы болеем и имеем высокую температуру, а потом она падает, мы обильно потеем. Также мы потеем при тяжелом физическом труде, при перегреве на Солнце. Пот выделяется через поры кожи, а затем испаряется, все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализировать температуру.

Аналогично это работает и у животных, а некоторые порой даже стремятся ускорить процесс испарения. Так, например собаки для этой цели в жаркую погоду открывают рот и высовывают язык. Именно гортань и язык собаки наиболее подходят для испарения влаги и охлаждения тела животного.

Что же касается растений, то и они обладают схожим механизмом. Во избежание перегрева на Солнце они запускают процесс испарения ранее поглощенной воды, таким образом, охлаждаясь. Именно поэтому очень важно в жаркую погоду усиленно поливать культурные растения, предотвращая их выгорание или засыхание, ведь в такие дни влага особенно нужна растениями не только для питания, но и для охлаждения.

Испарение в природе и окружающей среде

Роль испарения в природе просто огромна, так как без этого физического явления была бы невозможна сама Жизнь на нашей планете. Именно испарение лежит в основе естественного круговорота воды, который обеспечивает экосистему Земли необходимыми питательными элементами и разносит жизненно важную влагу по всему миру. Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, питают растения и деревья.

Именно благодаря испарению на Земле идут дожди, а о том, как они важны и как трудно без них приходится порой, спросите об этом жителей Северной Африки или Центральной Индии, которые часто страдают от засухи.

Испарение в промышленности и быту

Вот лишь несколько примеров использования испарения в промышленности.

  • Испарения применятся при создании охладителей для двигателей и ядерных реакторов.
  • При сушке различных вещей: от одежды до промышленного сырья.
  • При кондиционировании и очищении воздуха.
  • При очистке разных веществ на молекулярном уровне.
  • Во время готовке на пару в кулинарии.
  • При охлаждении воды.
Читайте также  Как уменьшить расстояние между струнами и грифом

Промышленная техника, работающая на основе процессов испарения, конструируется по одному и тому же принципу: в ней всегда максимально увеличена площадь поверхности жидкости, чем обеспечивается наиболее оптимальный теплообмен с газовой средой.

Видео

И в завершение образовательное видео по теме нашей статьи.

Испарение

Испаре́ние — процесс перехода вещества из жидкого состояния в газообразное, происходящий на поверхности вещества (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). Испарение (парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.

Существует более развёрнутое понятие испарения в высшей физике.

Испаре́ние — это процесс, при котором с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом Ek > Eп.

Содержание

Общая характеристика

Испарение твердого тела называется сублимацией (возгонкой), а парообразование в объёме жидкости — кипением. Обычно под испарением понимают парообразование на свободной поверхности жидкости в результате теплового движения её молекул при температуре ниже точки кипения, соответствующей давлению газовой среды, расположенной над указанной поверхностью. При этом молекулы, обладающие достаточно большой кинетической энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются.

Испарение — эндотермический процесс, при котором поглощается теплота фазового перехода — теплота испарения, затрачиваемая на преодоление сил молекулярного сцепления в жидкой фазе и на работу расширения при превращении жидкости в пар. Удельную теплоту испарения относят к 1 молю жидкости (молярная теплота испарения, Дж/моль) или к единице её массы (массовая теплота испарения, Дж/кг). Скорость испарения определяется поверхностной плотностью потока пара jп, проникающего за единицу времени в газовую фазу с единицы поверхности жидкости [в моль/(с.м 2 ) или кг/(с.м 2 )]. Наибольшее значение jп достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды испарение замедляется вследствие того, что скорость удаления молекул пара от поверхности жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у поверхности раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в основной массе парогазовой смеси.

Процесс испарения зависит от интенсивности теплового движения молекул: чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии, а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Молекулярный уровень

Рассмотрим данный процесс на молекулярном уровне: молекулы, обладающие достаточной энергией (скоростью) для преодоления притяжения соседних молекул, вырываются за границы вещества (жидкости). При этом жидкость теряет часть своей энергии (остывает). Например, очень горячая жидкость: мы дуем на её поверхность, чтобы остудить, при этом, мы ускоряем процесс испарения.

Термодинамическое равновесие

Нарушение термодинамического равновесия между жидкостью и паром, содержащимся в парогазовой смеси, объясняется скачком температуры на границе раздела фаз. Однако обычно этим скачком можно пренебречь и принимать, что парциальное давление и концентрация пара у поверхности раздела фаз соответствуют их значениям для насыщенного пара, имеющего температуру поверхности жидкости. Если жидкость и парогазовая смесь неподвижны и влияние свободной конвекции в них незначительно, удаление образовавшегося при испарении пара от поверхности жидкости в газовую среду происходит в основном в результате молекулярной диффузии и появления вызываемого последней при полупроницаемой (непроницаемой для газа) поверхности раздела фаз массового (так называемого стефановского) потока парогазовой смеси, направленного от поверхности жидкости в газовую среду (см. Диффузия). Распределение температур при различных режимах испарительного охлаждения жидкости. Потоки теплоты направлены: а — от жидкой фазы к поверхности испарения в газовую фазу; б — от жидкой фазы только к поверхности испарения; в — к поверхности испарения со стороны обеих фаз; г — к поверхности испарения только со стороны газовой фазы.

Баро-, термодиффузии

Эффекты баро- и термодиффузии при инженерных расчетах обычно не учитываются, но влияние термодиффузии может быть существенным при высокой неоднородности парогазовой смеси (при большом различии молярных масс её компонентов) и значительных градиентах температур. При движении одной или обеих фаз относительно поверхности их раздела возрастает роль конвективного переноса вещества и энергии парогазовой смеси и жидкости.

При отсутствии подвода энергии к системе жидкость-газ от внеш. источников теплота Испарение может подводиться к поверхностному слою жидкости со стороны одной или обеих фаз. В отличие от результирующего потока вещества, всегда направленного при испарении от жидкости в газовую среду, потоки теплоты могут иметь разные направления в зависимости от соотношений температур основной массы жидкости tж, границы раздела фаз tгр и газовой среды tг. При контакте определенного кол-ва жидкости с полубесконечным объёмом или омывающим её поверхность потоком газовой среды и при температуре жидкости, более высокой, чем температура газа (tж > tгр > tг), возникает поток теплоты со стороны жидкости к поверхности раздела фаз: (Qжг = Qж — Qи, где Qи -теплота испарения, Qжг — количество теплоты, передаваемой от жидкости газовой среде. При этом жидкость охлаждается (так называемое испарительное охлаждение). Если в результате такого охлаждения достигается равенство tгр = tг, теплоотдача от жидкости к газу прекращается (Qжг = 0) и вся теплота, подводимая со стороны жидкости к поверхности раздела, затрачивается на Испарение (Qж = Qи).

В случае газовой среды, не насыщенной паром, парциальное давление последнего у поверхности раздела фаз и при Qж = Qи остается более высоким, чем в основной массе газа, вследствие чего испарение и испарительное охлаждение жидкости не прекращаются и tгр становится ниже tж и tг. При этом теплота подводится к поверхности раздела от обеих фаз до тех пор, пока в результате понижения tж достигается равенство tгр = tж и поток теплоты со стороны жидкости прекращается, а со стороны газовой среды Qгж становится равным Qи. Дальнейшее испарение жидкости происходит при постоянной температуре tм = tж = tгр, которую называют пределом охлаждения жидкости при испарительном охлаждении или температурой мокрого термометра (так как её показывает мокрый термометр психрометра). Значение tм зависит от параметров парогазовой среды и условий тепло- и массообмена между жидкой и газовой фазами.

Если жидкость и газовая среда, имеющие различные температуры, находятся в ограниченном объёме, не получающем энергию извне и не отдающем её наружу, Испарение происходит до тех пор, пока между двумя фазами не наступает термодинамическое равновесие, при котором температуры обеих фаз уравниваются при неизменной энтальпии системы, и газовая фаза насыщается паром при температуре системы tад. Последняя, называется температурой адиабатического насыщения газа, определяется только начальными параметрами обеих фаз и не зависит от условий тепло- и массообмена.

Скорость испарения

Скорость изотермического испарения [кг/(м 2 •с)] при однонаправленной диффузии пара в расположенный над поверхностью жидкости неподвижный слой бинарной парогазовой смеси толщиной d, [м] может быть найдена по формуле Стефана: , где D — коэффициент взаимной диффузии, [м 2 /с]; — газовая постоянная пара, [Дж/(кг•К)] или [м 2 /(с 2 •K)]; T — температура смеси, [К]; р — давление парогазовой смеси, [Па]; — парциальные давления пара у поверхности раздела и на наружной границе слоя смеси, [Па].

В общем случае (движущиеся жидкость и газ, неизотермической условия) в прилегающем к поверхности раздела фаз пограничном слое жидкости переносу импульса сопутствует перенос теплоты, а в пограничном слое газа (парогазовой смеси) происходят взаимосвязанные тепло- и массоперенос. При этом для расчета скорости Испарение используют экспериментальные коэффициенты тепло- и массоотдачи, а в относительно более простых случаях — приближенные методы численных решений системы дифференциальных уравнений для сопряженных пограничных слоев газовой и жидкой фаз.

Интенсивность массообмена при испарении зависит от разности химических потенциалов пара у поверхности раздела и в основной массе парогазовой смеси. Однако если баро- и термодиффузией можно пренебречь, разность химических потенциалов заменяют разностью парциальных давлений или концентраций паров и принимают: jп = bp (рп, гр — рп, осн) = bpр(уп, гр — уп, осн) или jп = bc(cп, гр — сп, осн), где bp, bc — коэффициент массоотдачи, p — давление смеси, рп — парциальное давление пара, yп = pп/p — молярная концентрация паров, cп = rп/r — массовая концентрация паров, rп, r — локальные плотности паров и смеси; индексы означают: «гр» — у границы раздела фаз, «осн» — в осн. массе смеси. Плотность потока теплоты, отдаваемой при Испарение жидкостью, составляет [в Дж/(м2•с)]: q = aж(tж — tгр) = rjп + aг (tгр — tг), где aж, aг — коэффициент теплоотдачи со стороны жидкости и газа, [Вт/(м 2 •К)]; r — теплота Испарение, [Дж/кг].

При очень малых радиусах кривизны поверхности испарения (например, при испарении мелких капель жидкости) учитывается влияние поверхностного натяжения жидкости, приводящего к тому, что равновесное давление пара над поверхностью раздела выше давления насыщенных паров той же жидкости над плоской поверхностью. Если tгр

tж, то при расчете испарения могут приниматься во внимание только тепло- и массообмен в газовой фазе. При относительно малой интенсивности массообмена приближенно справедлива аналогия между процессами тепло- и массопереноса, из которой следует: Nu/Nu0 = Sh*/Sh0, где Nu = aг l/lг — число Нуссельта, l — характерный размер поверхности испарения, lг — коэффициент теплопроводности парогазовой смеси, Sh* = bpyг, грl/Dp = bccг, грl/D — число Шервуда для диффузионной составляющей потока пара, Dp = D/RпT -коэффициент диффузии, отнесенный к градиенту парциального давления пара. Значения bp и bс вычисляют по приведенным выше соотношениям, числа Nu0 и Sh0 соответствуют jп : 0 и могут определяться по данным для раздельно происходящих процессов тепло- и массообмена. Число Sh0 для суммарного (диффузионного и конвективного) потока пара находят делением Sh* на молярную (yг, гр) или массовую (сг, гр) концентрацию газа у поверхности раздела в зависимости от того, к какой движущей силе массообмена отнесен коэффициент b.

Уравнения

Уравнения подобия для Nu и Sh* при испарении включают кроме обычных критериев (чисел Рейнольдса Re, Архимеда Аr, Прандтля Рr или Шмидта Sc и геом. параметров) параметры, учитывающие влияние поперечного потока пара и степени неоднородности парогазовой смеси (отношения молярных масс или газовых постоянных её компонентов) на профили, скорости, температуры или концентраций в сечении пограничного слоя.

При малых jп, не нарушающих существенно гидродинамический режим движения парогазовой смеси (например, при испарении воды в атмосферный воздух) и подобие граничных условий полей температур и концентраций, влияние дополнительных аргументов в уравнениях подобия незначительно и им можно пренебречь, принимая, что Nu = Sh. При испарении многокомпонентных смесей указанные закономерности сильно усложняются. При этом теплоты испарения компонентов смеси и составы жидкой и парогазовой фаз, находящихся между собой в равновесии, различны и зависят от температуры. При испарении бинарной жидкой смеси образующаяся смесь паров в относительно богаче более летучим компонентом, исключая только азеотропные смеси, испаряющиеся в точках экстремума (максимума или минимума) кривых состояния как чистая жидкость.

Конструкции аппаратов

Общее количество испаряющейся жидкости увеличивается с возрастанием поверхности контакта жидкой и газовой фаз, поэтому конструкции аппаратов, в которых происходит испарение, предусматривают увеличение поверхности испарения путем создания большого зеркала жидкости, раздробления её на струи и капли или образования тонких пленок, стекающих по поверхности насадок. Возрастание интенсивности тепло- и массообмена при испарении достигается также повышением скорости газовой среды относительно поверхности жидкости. Однако увеличение этой скорости не должно приводить к чрезмерному уносу жидкости газовой средой и значительному повышению гидравлического сопротивления аппарата.

Применение

Испарение широко применяется в промышленной практике для очистки веществ, сушки материалов, разделения жидких смесей, кондиционирования воздуха. Испарительное охлаждение воды используется в оборотных системах водоснабжения предприятий.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: