Для чего нужны логарифмы

Что такое логарифм. Как посчитать логарифм. Свойства логарифмов. Примеры решения логарифмов

Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.

Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.

В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.

Итак, давайте разбираться, что такое логарифм.

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

где a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.и преобразовываем вЗапомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:А в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Еще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Чтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

И вычислить его можно таким образом:

Основные свойства логарифмов

Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:

Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!

Рассмотрим свойства логарифмов на примерах.

Логарифмический ноль и логарифмическая единица

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:

loga 1 = 0 – логарифмический ноль.

Основное логарифмическое тождество

В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.

Вторая формула по сути является просто переформулированным определением логарифма

Разберем применение тождества на примере:

Необходимо найти значение выраженияСначала преобразуем логарифм

Вернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:Теперь применим основное логарифмическое тождество и получим:

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать:Логарифмы с одинаковыми основаниями можно вычитать:Мы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Вынесение показателя степени из логарифма

Вынесение показателя степени из логарифма:

Переход к новому основанию

Когда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.

Разберем на примере.

Необходимо найти значение такого выраженияДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:

Теперь применим переход к новому основанию для второго логарифма:Подставим полученные результаты в исходное выражение:

10 примеров логарифмов с решением

1. Найти значение выражения2. Найти значение выражения3. Найти значение выражения4. Найти значение выражения5. Найти значение выражения6. Найти значение выраженияСначала найдем значениеДля этого приравняем его к Х:Тогда изначальное выражение принимает вид:

7. Найти значение выраженияПреобразуем наше выражение:Теперь воспользуемся свойством вынесения показателя степени из логарифма и получим: 8. Найти значение выраженияТак как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:9. Найти значение выраженияТак как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:Подставляем полученные значения в исходное выражение:

10. Найти значение выраженияОбращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:

Надеюсь, теперь вы разобрались, что такое логарифм.

Введение в анализ сложности алгоритмов (часть 3)

От переводчика: данный текст даётся с незначительными сокращениями по причине местами излишней «разжёванности» материала. Автор абсолютно справедливо предупреждает, что отдельные темы могут показаться читателю чересчур простыми или общеизвестными. Тем не менее, лично мне этот текст помог упорядочить имеющиеся знания по анализу сложности алгоритмов. Надеюсь, что он окажется полезен и кому-то ещё.
Из-за большого объёма оригинальной статьи я разбила её на части, которых в общей сложности будет четыре.
Я (как всегда) буду крайне признательна за любые замечания в личку по улучшению качества перевода.

Логарифмы


Если вы знаете, что такое логарифмы, то можете спокойно пропустить этот раздел. Глава предназначается тем, кто незнаком с данным понятием или пользуется им настолько редко, что уже забыл что там к чему. Логарифмы важны, поскольку они очень часто встречаются при анализе сложности. Логарифм — это операция, которая при применении её к числу делает его гораздо меньше (подобно взятию квадратного корня). Итак, первая вещь, которую вы должны запомнить: логарифм возвращает число, меньшее, чем оригинал. На рисунке справа зелёный график — линейная функция f(n) = n , красный — f(n) = sqrt(n) , а наименее быстро возрастающий — f(n) = log(n) . Далее: подобно тому, как взятие квадратного корня является операцией, обратной возведению в квадрат, логарифм — обратная операция возведению чего-либо в степень.

Поясню на примере. Рассмотрим уравнение

Чтобы найти из него x , спросим себя: в какую степень надо возвести 2, чтобы получить 1024? Ответ: в десятую. В самом деле, 2 10 = 1024 , что легко проверить. Логарифмы помогают нам описать данную задачу, используя новую нотацию. В данном случае, 10 является логарифмом 1024 и записывается, как log( 1024 ). Читается: «логарифм 1024». Поскольку мы использовали 2 в качестве основания, то такие логарифмы называются «по основанию 2». Основанием может быть любое число, но в этой статье мы будем использовать только двойку. Если вы ученик-олимпиадник и не знакомы с логарифмами, то я рекомендую вам попрактиковаться после того, как закончите чтение этой статьи. В информатике логарифмы по основанию 2 распространены больше, чем какие-либо другие, поскольку часто мы имеем всего две сущности: 0 и 1. Также существует тенденция разбивать объёмные задачи пополам, а половин, как известно, тоже бывает всего две. Поэтому для дальнейшего чтения статьи вам достаточно иметь представление только о логарифмах по основанию 2.

Решите уравнения ниже, записывая логарифмы, которые вы ищете. Используйте только логарифмы по основанию 2.

  1. 2 x = 64
  2. (2 2 ) x = 64
  3. 4 x = 4
  4. 2 x = 1
  5. 2 x + 2 x = 32
  6. (2 x) * (2 x ) = 64

Практическая рекомендация: на соревнованиях алгоритмы часто реализуются на С++. Как только вы проанализировали сложность вашего алгоритма, так сразу можете получить и грубую оценку того, как быстро он будет работать, приняв, что в секунду выполняется 1 000 000 команд. Их количество считается из полученной вами функции асимптотической оценки, описывающей алгоритм. Например, вычисление по алгоритму с Θ( n ) займёт около секунды при n = 1 000 000.

Рекурсивная сложность

А теперь давайте обратимся к рекурсивным функциям. Рекурсивная функция — это функция, которая вызывает сама себя. Можем ли мы проанализировать её сложность? Следующая функция, написанная на Python, вычисляет факториал заданного числа. Факториал целого положительного числа находится как произведение всех предыдущих положительных целых чисел. Например, факториал 5 — это 5 * 4 * 3 * 2 * 1 . Обозначается он как «5!» и произносится «факториал пяти» (впрочем, некоторые предпочитают «ПЯТЬ. 11»).

Давайте проанализируем эту функцию. Она не содержит циклов, но её сложность всё равно не является константной. Что ж, придётся вновь заняться подсчётом инструкций. Очевидно, что если мы применим эту функцию к некоторому n , то она будет вычисляться n раз. (Если вы в этом не уверены, то можете вручную расписать ход вычисления при n = 5 , чтобы определить, как это на самом деле работает.) Таким образом, мы видим, что эта функция является Θ( n ) .

Если вы всё же не уверены в этом, то вы всегда можете найти точную сложность путём подсчёта количества инструкций. Примените этот метод к данной функции, чтобы найти её f( n ), и убедитесь, что она линейная (напомню, что линейность означает Θ( n ) ).

Логарифмическая сложность

Одной из известнейших задач в информатике является поиск значения в массиве. Мы уже решали её ранее для общего случая. Задача становится интереснее, если у нас есть отсортированный массив, в котором мы хотим найти заданное значение. Одним из способов сделать это является бинарный поиск. Мы берём средний элемент из нашего массива: если он совпадает с тем, что мы искали, то задача решена. В противном случае, если заданное значение больше этого элемента, то мы знаем, что оно должно лежать в правой части массива. А если меньше — то в левой. Мы будем разбивать эти подмассивы до тех пор, пока не получим искомое.

Вот реализация такого метода в псевдокоде:

Читайте также  Что делать, если ноготь на ноге оторвался?

Приведённый псевдокод — упрощение настоящей реализации. На практике этот метод описать проще, чем воплотить, поскольку программисту нужно решить некоторые дополнительные вопросы. Например, защиту от ошибок на одну позицию (off-by-one error, OBOE), да и деление на два не всегда может давать целое число, поэтому потребуется применять функции floor() или ceil() . Однако, предположим, что в нашем случае деление всегда будет успешным, наш код защищён от ошибок off-by-one, и всё, что мы хотим — это проанализировать сложность данного метода. Если вы никогда раньше не реализовывали бинарный поиск, то можете сделать это на вашем любимом языке программирования. Такая задача по-настоящему поучительна.

Если вы не уверены, что метод работает в принципе, то отвлекитесь и решите вручную какой-нибудь простой пример.

Теперь давайте попробуем проанализировать этот алгоритм. Ещё раз, в этом случае мы имеем рекурсивный алгоритм. Давайте для простоты предположим, что массив всегда разбивается ровно пополам, игнорируя +1 и -1 части в рекурсивном вызове. К этому моменту вы должны быть уверены, что такое небольшое изменение, как игнорирование +1 и -1, не повлияет на конечный результат оценки сложности. В принципе, обычно этот факт необходимо доказывать, если мы хотим проявить осторожность с математической точки зрения. Но на практике это очевидно на уровне интуиции. Также для простоты давайте предположим, что наш массив имеет размер одной из степеней двойки. Опять-таки, это предположение никоим образом не повлияет на конечный результат расчёта сложности алгоритма. Наихудшим сценарием для данной задачи будет вариант, когда массив в принципе не содержит искомое значение. В этом случае мы начинаем с массива размером n на первом рекурсивном вызове, n / 2 на втором, n / 4 на третьем и так далее. В общем, наш массив разбивается пополам на каждом вызове до тех пор, пока мы не достигнем единицы. Давайте запишем количество элементов в массиве на каждом вызове:
0-я итерация: n
1-я итерация: n / 2
2-я итерация: n / 4
3-я итерация: n / 8

i-я итерация: n / 2 i

последняя итерация: 1

Заметьте, что на i-й итерации массив имеет n / 2 i элементов. Мы каждый раз разбиваем его пополам, что подразумевает деление количества элементов на два (равноценно умножению знаменателя на два). Проделав это i раз, получим n / 2 i . Процесс будет продолжаться, и из каждого большого i мы будем получать меньшее количество элементов до тех пор, пока не достигнем единицы. Если мы захотим узнать, на какой итерации это произошло, нам нужно будет просто решить следующее уравнение:

Равенство будет истинным только тогда, когда мы достигнем конечного вызова функции binarySearch() , так что узнав из него i , мы будем знать номер последней рекурсивной итерации. Умножив обе части на 2 i , получим:

Если вы прочли раздел о логарифмах выше, то такое выражение будет для вас знакомым. Решив его, мы получим:

Этот ответ говорит нам, что количество итераций, необходимых для бинарного поиска, равняется log( n ) , где n — размер оригинального массива.

Если немного подумать, то это имеет смысл. Например, возьмём n = 32 (массив из 32-х элементов). Сколько раз нам потребуется разделить его, чтобы получить один элемент? Считаем: 32 → 16 → 8 → 4 → 2 → 1 — итого 5 раз, что является логарифмом 32. Таким образом, сложность бинарного поиска равна Θ( log( n ) ) .

Последний результат позволяет нам сравнивать бинарный поиск с линейным (нашим предыдущим методом). Несомненно, log( n ) намного меньше n , из чего правомерно заключить, что первый намного быстрее второго. Так что имеет смысл хранить массивы в отсортированном виде, если мы собираемся часто искать в них значения.

Практическая рекомендация: улучшение асимптотического времени выполнения программы часто чрезвычайно повышает её производительность. Намного сильнее, чем небольшая «техническая» оптимизация в виде использования более быстрого языка программирования.

Логарифмы и их свойства

Обычно определение логарифма дают очень сложно и запутанно. Мы постараемся сделать это очень просто и наглядно.

Для того, чтобы разобраться, что такое логарифм, давайте рассмотрим пример:

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 ((log_<2>(32))) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

Аналогично, глядя в таблицу получим, что:

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа (b) по основанию положительно числа (a) называется степень (c), в которую нужно возвести число (a), чтобы получить (b)

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм — это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

Или логарифм шести по основанию 4:

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм (log_<4>(6)). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6ке:

$$ log_<4>(4) lt log_<4>(6) lt log_<4>(16);$$ $$ 1 lt log_<4>(6) lt 2. $$

Значит (log_<4>(6)) принадлежите промежутку от 1 до 2:

Как посчитать логарифм

Почему так? Это следует из определения показательной функций. Показательная функция не может быть (0). А основание не равно (1), потому что тогда логарифм теряет смысл – ведь (1) в любой степени это будет (1).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень (x) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • (x) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм (9) по основанию (3): (log_<3>(9))

  • Сначала представим аргумент и основание в виде степени тройки: $$ 3=3^1, qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень (x) нужно возвести (3^1), чтобы получить (3^2) $$ (3^1)^x=3^2, $$ $$ 3^<1*x>=3^2, $$ $$ 1*x=2,$$ $$ x=2.$$
  • Вот мы и решили: $$log_<3>(9)=2.$$

Пример 2. Вычислить логарифм (frac<1><125>) по основанию (5): (log_<5>(frac<1><125>))

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1, qquad frac<1><125>=frac<1><5^3>=5^<-3>;$$
  • В какую степень (x) надо возвести (5^1), чтобы получить (5^<-3>): $$ (5^1)^x=5^<-3>, $$ $$ 5^<1*x>=5^<-3>,$$ $$1*x=-3,$$ $$x=-3.$$
  • Получили ответ: $$ log_<5>(frac<1><125>)=-3.$$

Пример 3. Вычислить логарифм (4) по основанию (64): (log_<64>(4))

  • Представим аргумент и основание в виде степени двойки: $$ 64=2^6, qquad 4=2^2;$$
  • В какую степень (x) надо возвести (2^6), чтобы получить (2^<2>): $$ (2^6)^x=2^<2>, $$ $$ 2^<6*x>=2^<2>,$$ $$6*x=2,$$ $$x=frac<2><6>=frac<1><3>.$$
  • Получили ответ: $$ log_<64>(4)=frac<1><3>.$$

Пример 4. Вычислить логарифм (1) по основанию (8): (log_<8>(1))

  • Представим аргумент и основание в виде степени двойки: $$ 8=2^3 qquad 1=2^0;$$
  • В какую степень (x) надо возвести (2^3), чтобы получить (2^<0>): $$ (2^3)^x=2^<0>, $$ $$ 2^<3*x>=2^<0>,$$ $$3*x=0,$$ $$x=frac<0><3>=0.$$
  • Получили ответ: $$ log_<8>(1)=0.$$

Пример 5. Вычислить логарифм (15) по основанию (5): (log_<5>(15))

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1 qquad 15= . ;$$ (15) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть: $$ log_<5>(15).$$

Как понять, что некоторое число (a) не будет являться степенью другого числа (b). Это довольно просто – нужно разложить (a) на простые множители.

(16) разложили, как произведение четырех двоек, значит (16) будет степенью двойки.

Разложив (48) на простые множители, видно, что у нас есть два множителя (2) и (3), значит (48) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается — (lg(a)).

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию (e). Обозначение — (ln(x)). Что такое (e)? Так обозначают экспоненту, число-константу, равную, примерно, (2,718281828459…). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием (e) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой (3). Логарифм от произведения – это сумма логарифмов.

Пример 9. Воспользоваться формулой (4). Логарифм от частного – это разность логарифмов.

Пример 10. Формула (5,6). Свойства степени.

Логично, что будет выполняться и такое соотношение:

Пример 11. Формулы (7,8). Переход к другому основанию.

Его величество логарифм

Кандидат химических наук Александр Семёнов, главный эксперт АО «ВНИИНМ».

Посвящаю памяти своей мамы Лидии Васильевны Семёновой, впервые познакомившей меня с логарифмами.

Ч етыреста лет назад в математике и в науке в целом произошло знаменательное событие. Эксцентричный шотландский барон, математик, богослов, астролог и мистик Джон Непер (1550—1617) ввёл новое понятие — «логарифм». Опубликованные им в 1614 году «Волшебные таблицы логарифмов», фактически содержавшие значения логарифмической функции, были результатом упорных трудов и кропотливых расчётов. Многие математики занимались этой замечательной функцией, а некоторые потратили на неё десятки лет своей жизни. Что же привлекало их в логарифмах, которыми мы пользуемся до сих пор?

Долгожданный помощник астрономов

Логарифм тесно связан с более привычной всем функцией возведения в степень (1) и является одной из двух обратных функций к ней, наряду с операцией извлечения корня (2):

Если в формуле (1) переменной служит величина А, то мы имеем дело со степенной функцией. При переменном показателе степени х та же формула (1) определяет показательную функцию, которую иногда называют ещё антилогарифмом по основанию А. Логарифмирование (3) представляет собой поиск неизвестного показателя степени x из (1). Величина A называется основанием логарифма. Наиболее часто используют логарифмы по основанию 10, которые носят названия десятичных и обозначаются lg x, и логарифмы по основанию е = 2,71828… — натуральные логарифмы −ln x. Менее популярны, но имеют важное и самостоятельное значение двоичные логарифмы, которые с недавнего времени, согласно стандарту ISO 31-11, имеют пока ещё малоизвестное собственное обозначение lb x, но чаще записываются как log2x.

Например, если мы возводим число 10 в квадрат, в куб, в четвёртую степень, то соответственно имеем результатом 100, 1000 и 10000. Тогда логарифмами этих чисел по основанию 10 будут соответственно величины 2, 3 и 4 — показатели степени, в которые возводится число:

Поскольку мы используем десятичную систему счисления, логарифмы таких чисел совпадают с количеством нулей после единицы.

Главное «волшебство» заключается в том, что логарифм позволяет заменить сложные, в отсутствие калькуляторов, операции умножения и деления многозначных чисел намного более простыми сложением и вычитанием, поскольку log (ab) = = log a + log b и log (a/b) = log a – log b. (Если у логарифма не указано основание, то формула справедлива при любом основании.)

Графики трёх наиболее часто используемых логарифмических функций: двоичного, натурального и десятичного логарифмов.

Поясним это на простом примере умножения чисел 1265 и 432. Пусть в нашем распоряжении имеется таблица десятичных логарифмов. Тогда находим по ней lg 1265 и lg 432, подсчитываем их сумму. Получили логарифм ответа, который находим снова по таблице. В математической форме то, что мы проделали, выглядит так:

lg 1265·432 = lg 1265 + lg 432 ≈ 3,1020905+ + 2,6354837 = 5,7375742 ≈ lg 546480. Ответ: 1265·432 = 546480.

Точность ответа определяется числом знаков, с которым вычислены логарифмы в таблице.

На рубеже XVI—XVII веков такая замена была особенно долгожданной, поскольку развивающиеся науки требовали всё большего количества вычислений. По словам французского математика Пьера-Симона Лапласа (1749—1827), открытие логарифма как бы подарило учёным, в первую очередь астрономам, дополнительные годы жизни за счёт значительного сокращения громоздких расчётов.

Логарифмы Непера

Как же Непер вычислял свои логарифмы? Со времён Архимеда было известно, что если составить последовательность целых чисел x в виде арифметической прогрессии и подставить эти числа в выражение (1), то полученные значения величины y будут располагаться в геометрической прогрессии — каждое следующее число будет больше предыдущего в A раз. Однако при попытке перейти в формуле (1) к дробным, а тем более к иррациональным величинам x возникали сложности, которые до Джона Непера никому так и не удалось решить. Фактически надо было перейти от последовательностей целых чисел к непрерывной функции с произвольным значением показателя степени x.

Гениальность подхода Джона Непера заключалась в том, что он для вычислений использовал так называемый кинематический метод. Непер задал равномерное движение точки x, которому соответствовало равнозамедленное движение точки у.

При вычислении логарифмов Джон Непер использовал кинематический метод. Он сопоставил движение двух точек по двум прямым: равномерное движение точки N на бесконечной прямой с началом в точке N0 и движение точки M на прямой конечной длины М0R. Скорость движения точки M равномерно уменьшалась пропорционально расстоянию, которое ей оставалось пройти до конечной точки R. При устремлении точки N в бесконечность точка M стремилась в точку R, не имея возможности её достигнуть. Если отметить на обеих прямых положения точек M и N, в которых они будут находиться через несколько равных промежутков времени, то на шкале логарифмов N получается арифметическая прогрессия, а на шкале аргументов M образуется прогрессия геометрическая из расстояний между соседними положениями этой замедленно движущейся точки. Такое соответствие точек на двух прямых как раз и представляло искомую логарифмическую зависимость между величинами.

Для расчётов, чтобы избежать отрицательных и дробных значений логарифмов новой функции, Непер сделал её убывающей: он умножал значения логарифмов на 10 миллионов и постулировал, что «логарифм» от 10 миллионов равен нулю.

По сути, Джон Непер предвосхитил дифференциальное исчисление в те времена, когда ещё не было самого понятия функции, функциональной связи между величинами. Для читателей, знающих высшую математику, скажем, что его зависимость между х и у выражается несложным дифференциальным уравнением:

Решение этого уравнения как раз и даёт логарифмическую зависимость в виде y = C − 10 7 ln x. Неопределённый коэффициент C у Непера из условия y(10 7 ) = 0 равен С = 10 7 ln(10 7 ) = 161180956,5.

Таким образом, полученная функция, которую Непер назвал логарифмом, заметно отличается от логарифмов современных, так как на самом деле имеет вид:

Её во избежание путаницы называют «неперов логарифм».

— фактическое основание логарифма непера, сам Непер основание логарифма не вводил.

Термин «логарифм», впервые использованный Непером, состоит из двух древнегреческих корней: λóγος — «отношение» и άριθμος — «число».

Логарифмы Непера были рассчитаны для тригонометрических функций углов, находящихся в диапазоне 0—90 о с шагом в одну угловую минуту, с точностью до восьмого знака. Итогом расчётов стала первая в истории человечества таблица логарифмов. Она действительно позволяла заменить умножение многозначных чисел сложением, а их деление вычитанием, хотя это получалось немного более сложным образом, чем при использовании современных логарифмических функций.

Синусы, косинусы и тангенсы присутствовали в этих таблицах из-за того, что основной целью Непера являлось упрощение тригонометрических вычислений, с которыми связаны многие его работы. Надо отметить среди научных заслуг Джона Непера также вывод ряда формул из сферической тригонометрии, которые носят его имя.

Как ни странно, логарифмы Джону Неперу потребовались не для научных, а для астрологических расчётов, в которых он их активно применял. Непер вообще был личностью загадочной: одевался в чёрные одежды, ходил с чёрным петухом, сидящим на плече, а в коробочке с собою носил чёрного паука. Увлекался магией, опубликовал собственное толкование книги «Апокалипсис» («Откровения Иоанна Богослова»).

Непер использовал оригинальные формулы для вычисления логарифмов и больше полагался на интуицию, чем на строгие доказательства. Из-за этого в его алгоритме была допущена ошибка, делавшая неверными цифры после шестого знака, что, впрочем, не помешало популярности метода. Таблицы Непера с подробным описанием их составления и использования до сих пор вызывают удивление и восхищение как пытливостью ума их автора, так и его терпением и настойчивостью.

Соавторы и продолжатели

Над созданием подобных таблиц в то время работали учёные разных стран. Вторым «отцом» логарифмов считают швейцарца Йоста Бюрги (1552—1632), известного часовщика и изобретателя секундной стрелки, который работал независимо от Непера. Он потратил на создание собственных таблиц логарифмов более восьми лет. Произведя свыше 230 миллионов последовательных умножений, Бюрги составил с высокой точностью геометрическую прогрессию со знаменателем: 1,0001.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Что такое логарифм

Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.

Мы же определим логарифм просто и наглядно. Для этого составим таблицу:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют . Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log2 2 = 1 log2 4 = 2 log2 8 = 3 log2 16 = 4 log2 32 = 5 log2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке [2; 3]. Потому что 2 2 3 , а чем больше степень двойки, тем больше получится число.

Если взять калькулятор и посчитать, чему равны такие логарифмы, то получатся очень длинные числа. Взгляните сами:
log2 5 = 2,32192809.
log3 8 = 1,89278926.
log5 100 = 2,86135311.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log2 5, log3 8, log5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

Как считать логарифмы

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log5 25 = b ⇒ (5 1 ) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

  1. Представим основание и аргумент как степень тройки: 3 = 3 1 ; 1/81 = 81 −1 = (3 4 ) −1 = 3 −4 ;
  2. Составим и решим уравнение:
  3. Получили ответ: −4.
  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log4 64 = b ⇒ (2 2 ) b = 2 6 ⇒ 2 2 b = 2 6 ⇒ 2 b = 6 ⇒ b = 3;
  3. Получили ответ: 3.
  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log16 1 = b ⇒ (2 4 ) b = 2 0 ⇒ 2 4 b = 2 0 ⇒ 4 b = 0 ⇒ b = 0;
  3. Получили ответ: 0.
  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459.

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Что такое Логарифм

Определение логарифма

Логарифм — это математическая функция, основанная на свойствах возведения в степень.

Значение логарифма соответствует показателю степени данной базы, равному положительному числу “b” в базе “a”, что также должна быть положительной и отличаться от 1.

Чтобы лучше понять концепцию логарифма, необходимо посмотреть на формулу логарифмического уравнения:

“a” = основание, которое должно быть больше нуля (a > 0) и отличаться от единицы (a ≠ 1).

“b” = логарифмируемое число, где b должно быть больше нуля (b > 0).

В этом уравнении мы хотим найти, в какую степень (х) нужно возвести a, чтобы получилось b, т. е. aˣ = b.

, потому что

Формулы и свойства логарифмов

Некоторые из основных правил логарифма:

    Когда логарифмируемое число равно основанию логарифма, логарифм всегда будет равен 1 ;

Логарифм с любым основанием, число которого равно 1, всегда будет иметь результат равным 0 ;

Два логарифма с одинаковым основанием всегда будут иметь одинаковые числа ;

Если основание «а» возведено в степень логарифма с основанием «а» числа «b», то он равен «b» ;

В случае умножения чисел мы можем превратить их в сумму двух логарифмов с одинаковыми основаниями ;

А в случае деления чисел мы превращаем их в вычитание двух логарифмов с одинаковыми основаниями ;

Правило возведения в степень: логарифм в степени упрощается путём умножения степени на логарифм, сохраняя её основание и число (тоже самое делается с логарифмом в квадрате)

Формулы перехода к новому основанию:

Решение логарифмов — примеры

Пример 1

Пример 2

ОДЗ логарифма

Как определить Область Допустимых Значений логарифма:

Для определения ОДЗ логарифма мы обращаем внимание только на то, что стоит в скобках, и указываем, что вся эта часть больше ноля.

График логарифмической функции

Примерно таким образом может выглядеть график логарифмической функции (одна из линий на рисунке):

Свойства логарифмической функции :

  • E (y) = R, множество значений — все действительные числа;
  • область определения — множество всех положительных чисел D(y): (0;+∞);
  • её график всегда проходит через точку (1;0);
  • она не считается ни чётной, ни нечётной;
  • у неё нет ни наибольшего, ни наименьшего значений;
  • она не ограничена ни сверху, ни снизу;
  • если 0 функция убывает, а если a>1 => функция возрастает.

Логарифм Непера или натуральный логарифм

Состоит из логарифма, основанного на иррациональном числе, которое называется «число Эйлера», пишется как «e» и приблизительно равно 2,718281. Является обратной функцией к экспоненциальной функции.

Название логарифма («логарифм Непера») произошло от имени его изобретателя — математика Джона Непера.

Десятичный логарифм

Это наиболее распространённая модель математических вычислений, особенно в так называемых логарифмических шкалах (или логарифмическом масштабе). Например: шкала pH, шкала Рихтера интенсивности землетрясений, шкала частоты звука — нотная шкала, и другие. И характеризуется тем, что основание (её логарифма) равно 10.

Десятичный логарифм может быть представлен без указания его основания.

История логарифма

Первоначально концепция логарифма была создана шотландским математиком Джоном Непером (1550–1617) в 17-м веке, с целью упрощения сложных тригонометрических расчётов.

Английский математик Генри Бриггс (1561–1630) также внёс свой вклад в исследования логарифма и считается одним из ответственных за улучшение десятичного логарифма и за создание его современной версии.

Этимологически слово «логарифм» образовано объединением двух греческих терминов: λόγος — «основание» и ἀριθμός — «число».

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: