Как выглядит прямоугольная призма

Свойства и формулы прямоугольной призмы

Призма является одной из совершенных объемных фигур, наряду с шаром, цилиндром и пирамидой, свойства которой рассматриваются в специальном разделе геометрии – стереометрии. В данной статье обсудим основные характеристики прямоугольной призмы.

Фигура призма

Многие знают про треугольные призмы или шестиугольные, но не каждый человек четко представляет, что это за фигура в общем виде. В геометрии под ней понимают пространственный объект, который ограничен двумя одинаковыми многоугольниками и несколькими четырехугольниками. Два многоугольника называются основаниями призмы. Они лежат в параллельных плоскостях. Все четырехугольники являются параллелограммами и образуют боковую поверхность фигуры.

Основные формулы и свойства призмы касаются вопросов определения объема, площади ее поверхности и числа образующих фигуру элементов. В состав последних входят вершины, ребра и грани. Количества этих элементов связаны друг с другом выражением Эйлера для полиэдров. Оно имеет следующий вид:

Число ребер = число граней + число вершин — 2

Поскольку боковая поверхность призмы представлена всегда параллелограммами, то основные ее характеристики зависят от типа многоугольника, лежащего в основаниях этой фигуры. Если многоугольником является треугольник, то призма называется треугольной, если четырехугольник – то четырехугольной и так далее.

Прямоугольная призма

Если угол между каждой боковой стороной призмы и ее основанием равен 90 o , то такая фигура называется прямоугольной. Заметим, что речь идет об угле между сторонами, а не между ребрами. Часто такую фигуру называют прямой призмой.

Когда отмеченный угол равен 90 o , то все параллелограммы автоматически становятся прямоугольниками. Это еще одна причина, почему эту призму называют прямоугольной. На рисунке ниже показано, как выглядит прямоугольная призма.

Здесь мы видим, что каждая из трех призм отличается от остальных типом многоугольника, лежащего в основании фигуры. На рисунке приведены треугольная, четырехугольная и пятиугольная призмы. Количество прямоугольников для каждой из них равно 3, 4 и 5 соответственно.

Важным свойством прямоугольной призмы, которое отличает ее от косоугольной, является тот факт, что длина ее бокового ребра совпадает с высотой фигуры. Это свойство оказывается очень удобным при вычислении площади ее поверхности и объема.

Правильная призма

Всякая прямая призма, в основании которой лежит правильный многоугольник, называется правильной. Указанный многоугольник должен иметь одинаковые длины всех сторон и равные углы. Таким прямоугольником является равносторонний треугольник, квадрат, пентагон и так далее.

На рисунке ниже изображены две призмы. Левая из них является правильной, поскольку в ее основании находится квадрат и она прямая. Правая же, несмотря на то, что прямая, правильной не является, поскольку ее основание – это произвольный четырехугольник.

Единственной правильной призмой, которая имеет собственное название, является куб. Он получается, когда высота фигуры совпадает с длиной стороны квадрата, находящегося в основании.

Поскольку площадь для правильного многоугольника вычислить легко, то для любой правильной призмы известны формулы площади ее поверхности и объема.

Площадь правильного многоугольника

Перед тем как приводить формулы площади поверхности и объема призмы прямоугольной, рассмотрим правильный многоугольник.

Ниже на рисунке изображен набор правильных многоугольников, за исключением круга.

Видно, что для каждого из них число сторон совпадает с количеством углов. Более того, все стороны и углы являются одинаковыми. Эти свойства позволяют привести формулу, которая является универсальной для всех правильных многоугольников и позволяет вычислить их площадь. Формула имеет вид:

Где a – длина стороны, n – количество сторон (вершин) фигуры. Символом ctg обозначается тригонометрическая функция котангенс.

Покажем, как пользоваться этим выражением. Например, вычислим площадь равностороннего треугольника. Для него n = 3, тогда:

Теперь воспользуемся этой формулой для квадрата. Имеем:

То есть мы получили всем известное выражение для площади квадрата.

Поверхность призмы

Когда давалось геометрическое определение рассматриваемой фигуры, было показано, что она состоит из двух оснований и некоторого числа параллелограммов. Это число в точности равно количеству сторон многоугольника в основании. Площадь поверхности рассматриваемой фигуры принято записывать следующей формулой:

Где So – основания площадь, Sb – боковой поверхности. Поскольку последняя состоит из n параллелограммов, то ее величина равна сумме их площадей.

В случае правильной прямой призмы боковая поверхность будет образована прямоугольниками со сторонами a и h, где a – длина стороны основания, h – высота призмы. Для случая n правильного угольника, получаем формулу для площади Stot призмы:

Ниже приведен рисунок, демонстрирующий развертку шестиугольной призмы.

Видно, что фигура образована двумя правильными шестиугольниками и шестью одинаковыми прямоугольниками, одна сторона которых равна стороне шестиугольника. Применяя выражение выше для этой призмы, получим:

Формула объема

Объем призмы в общем случае вычисляется по следующей простой формуле:

Для прямоугольной фигуры высота является ее ребром, поэтому это выражение применять оказывается просто. Например, рассчитаем объем для треугольной правильной призмы. Выше уже была рассчитана площадь ее основания, она равна:

Тогда значение объема для фигуры будет следующим:

Приведенные формулы для прямой призмы с правильным многоугольником в основании показывают, что все свойства для таких фигур можно получить, если знать всего два параметра: длину стороны n-угольника и высоту призмы.

Прямоугольная призма. Формулы длин диагоналей, площади поверхности и объема

Стереометрия является разделом геометрии, который изучает разные свойства фигур в пространстве трехмерной системы координат. Одной из таких фигур является прямоугольная призма. Что она собой представляет, и какие свойства для нее характерны, рассмотрим в данной статье.

Призма прямоугольная в стереометрии

Каждый человек знаком с этой совершенной геометрической фигурой. Под ней понимают объемный объект, который состоит из шести прямоугольников в общем случае, причем все они попарно равны. Получить в пространстве эту призму несложно. Необходимо взять произвольный прямоугольник и перенести его параллельно самому себе вдоль отрезка, перпендикулярного исходному прямоугольнику. В результате получится фигура, показанная ниже на рисунке.

Прямоугольная призма также называется параллелепипедом. Если ее основание будет квадратом, то она станет правильной призмой, у которой боковые прямоугольники будут равны между собой. Если у правильной призмы сторона основания совпадет с высотой (длиной ребра бокового), тогда мы получим фигуру куб.

Элементы фигуры

Речь идет о геометрических элементах, из которых состоит рассматриваемая призма. Первое, что бросается в глаза при первом взгляде на фигуру — это ее грани. Как было отмечено, у нее их шесть. Две одинаковые грани образуют основания прямоугольной призмы, четыре оставшиеся составляют ее боковую поверхность. Все грани являются или прямоугольниками, либо квадратами.

Следующий важный элемент фигуры — это ребра. Призма имеет 12 ребер, причем 8 из них принадлежат основаниям. Оставшиеся четыре ребра являются боковыми. Их длина равна высоте фигуры.

Наконец, третьим важным элементом изучаемой призмы являются ее вершины. В отличие от пирамиды или конуса, призма не имеет выделенной вершины. Все они у нее являются равноправными. Их количество равно восьми.

Как видно из представленной количественной характеристики элементов прямой прямоугольной призмы, для их чисел справедлива теорема Эйлера:

число ребер = число сторон + число вершин — 2 =>

Диагонали фигуры

Диагонали прямоугольной призмы бывают двух видов:

  • те, которые расположены в плоскости граней фигуры;
  • те, что находятся в объеме.

Если обозначить буквами a, b и h длины сторон основания и длину бокового ребра, соответственно, тогда для длины диагоналей первого типа можно записать следующие равенства:

Читайте также  Как вставить карту памяти в телефон

Диагональ d1 принадлежит основаниям, а диагонали d2 и d3 лежат в плоскостях боковых прямоугольников. Очевидно, что записанные формулы следуют из теоремы Пифагора.

Что касается диагоналей второго типа (объемных), то любая прямоугольная призма имеет четыре таких диагонали. Тем не менее их длины равны между собой. Формула для определения длины объемной диагонали записывается в следующем виде:

Если вычислять диагональ d4 для куба, то можно записать следующее выражение, которое получается из предыдущего:

При этом, все диагонали граней куба будут равны друг другу, и их длины вычисляются так:

Длина объемной диагонали всегда больше длин диагоналей сторон.

Определение площади поверхности

Каждый школьник знает, что для удобного определения площади поверхности, которой обладает любая объемная фигура, следует сделать ее развертку на плоскости. Прямоугольная призма не является исключением. Ее развертку сделать просто, для этого следует отрезать два основания от фигуры, а затем, разрезать ее вдоль одного из боковых ребер. Развернув грани боковой поверхности, мы получим следующую картину.

Развертка представляет собой шесть прямоугольников трех видов. Обозначим стороны основания буквами a и b. Высоту фигуры обозначим h. Тогда площадь одного основания будет равна:

Площади двух разных боковых граней равны:

Поскольку параллелепипед имеет по паре одинаковых граней, формулы площадей для которых записаны, то площадь полной поверхности фигуры S будет равна:

Формула для S может быть упрощена, если прямоугольная призма обладает дополнительной симметрией. Например, если стороны ее основания равны (a = b), тогда для S можно записать такое выражение:

Это выражение следует из предыдущей формулы. Соответственно, если высота и длина основания равны (h=a), то мы получаем куб, площадь поверхности которого составит:

Заметим чем выше симметрия параллелепипеда, тем меньшее число линейных параметров необходимо знать, чтобы вычислить величину S.

Объем призмы прямоугольной

Изучаемая фигура состоит из шести граней, которые ограничивают пространственный объем. Он является объемом самой фигуры. Чтобы его рассчитать, можно применить универсальную формулу для всех призм и цилиндров. Она имеет следующий вид:

Поскольку основание изучаемой фигуры является прямоугольником, а ее высота равна длине ребра бокового, то объем призмы прямоугольной будет равен:

Полезно также привести формулы для правильной призмы с квадратным основанием и для куба, их объемы рассчитываются следующим образом:

для правильной призмы: V = a 2 *h;

Как и для площади, для определения объема необходимо знать от 1 до 3 линейных параметров в зависимости от симметрии параллелепипеда.

Прямоугольная призма. Формулы длин диагоналей, площади поверхности и объема

Стереометрия является разделом геометрии, который изучает разные свойства фигур в пространстве трехмерной системы координат. Одной из таких фигур является прямоугольная призма. Что она собой представляет, и какие свойства для нее характерны, рассмотрим в данной статье.

Призма прямоугольная в стереометрии

Каждый человек знаком с этой совершенной геометрической фигурой. Под ней понимают объемный объект, который состоит из шести прямоугольников в общем случае, причем все они попарно равны. Получить в пространстве эту призму несложно. Необходимо взять произвольный прямоугольник и перенести его параллельно самому себе вдоль отрезка, перпендикулярного исходному прямоугольнику. В результате получится фигура, показанная ниже на рисунке.

Вам будет интересно: Кто придумал двигатель внутреннего сгорания? Ключевые фигуры

Прямоугольная призма также называется параллелепипедом. Если ее основание будет квадратом, то она станет правильной призмой, у которой боковые прямоугольники будут равны между собой. Если у правильной призмы сторона основания совпадет с высотой (длиной ребра бокового), тогда мы получим фигуру куб.

Элементы фигуры

Речь идет о геометрических элементах, из которых состоит рассматриваемая призма. Первое, что бросается в глаза при первом взгляде на фигуру — это ее грани. Как было отмечено, у нее их шесть. Две одинаковые грани образуют основания прямоугольной призмы, четыре оставшиеся составляют ее боковую поверхность. Все грани являются или прямоугольниками, либо квадратами.

Следующий важный элемент фигуры — это ребра. Призма имеет 12 ребер, причем 8 из них принадлежат основаниям. Оставшиеся четыре ребра являются боковыми. Их длина равна высоте фигуры.

Наконец, третьим важным элементом изучаемой призмы являются ее вершины. В отличие от пирамиды или конуса, призма не имеет выделенной вершины. Все они у нее являются равноправными. Их количество равно восьми.

Как видно из представленной количественной характеристики элементов прямой прямоугольной призмы, для их чисел справедлива теорема Эйлера:

число ребер = число сторон + число вершин — 2 =>

Диагонали фигуры

Диагонали прямоугольной призмы бывают двух видов:

  • те, которые расположены в плоскости граней фигуры;
  • те, что находятся в объеме.

Если обозначить буквами a, b и h длины сторон основания и длину бокового ребра, соответственно, тогда для длины диагоналей первого типа можно записать следующие равенства:

Диагональ d1 принадлежит основаниям, а диагонали d2 и d3 лежат в плоскостях боковых прямоугольников. Очевидно, что записанные формулы следуют из теоремы Пифагора.

Что касается диагоналей второго типа (объемных), то любая прямоугольная призма имеет четыре таких диагонали. Тем не менее их длины равны между собой. Формула для определения длины объемной диагонали записывается в следующем виде:

Если вычислять диагональ d4 для куба, то можно записать следующее выражение, которое получается из предыдущего:

При этом, все диагонали граней куба будут равны друг другу, и их длины вычисляются так:

Длина объемной диагонали всегда больше длин диагоналей сторон.

Определение площади поверхности

Каждый школьник знает, что для удобного определения площади поверхности, которой обладает любая объемная фигура, следует сделать ее развертку на плоскости. Прямоугольная призма не является исключением. Ее развертку сделать просто, для этого следует отрезать два основания от фигуры, а затем, разрезать ее вдоль одного из боковых ребер. Развернув грани боковой поверхности, мы получим следующую картину.

Развертка представляет собой шесть прямоугольников трех видов. Обозначим стороны основания буквами a и b. Высоту фигуры обозначим h. Тогда площадь одного основания будет равна:

Площади двух разных боковых граней равны:

Поскольку параллелепипед имеет по паре одинаковых граней, формулы площадей для которых записаны, то площадь полной поверхности фигуры S будет равна:

S = 2*(So + S1 + S2) = 2*(a*b + a*h + b*h).

Формула для S может быть упрощена, если прямоугольная призма обладает дополнительной симметрией. Например, если стороны ее основания равны (a = b), тогда для S можно записать такое выражение:

Это выражение следует из предыдущей формулы. Соответственно, если высота и длина основания равны (h=a), то мы получаем куб, площадь поверхности которого составит:

Заметим чем выше симметрия параллелепипеда, тем меньшее число линейных параметров необходимо знать, чтобы вычислить величину S.

Объем призмы прямоугольной

Изучаемая фигура состоит из шести граней, которые ограничивают пространственный объем. Он является объемом самой фигуры. Чтобы его рассчитать, можно применить универсальную формулу для всех призм и цилиндров. Она имеет следующий вид:

Поскольку основание изучаемой фигуры является прямоугольником, а ее высота равна длине ребра бокового, то объем призмы прямоугольной будет равен:

Полезно также привести формулы для правильной призмы с квадратным основанием и для куба, их объемы рассчитываются следующим образом:

для правильной призмы: V = a2*h;

Как и для площади, для определения объема необходимо знать от 1 до 3 линейных параметров в зависимости от симметрии параллелепипеда.

Читайте также  Как втачать рукава

Призма. Виды призмы

Если вы уже знакомы с призмой, и хотите для себя просто что-то уточнить, то вам вполне может хватить таблицы, что дана в конце статьи.

Мы же поведем подробный разговор.

Призмой (n-угольной призмой) называется многогранник, составленный из двух равных многоугольников и , лежащих в параллельных плоскостях, и параллелограммов .

Указанные в определении равные многоугольники – основания призмы .

Боковые грани – все грани, кроме оснований ( являются параллелограммами ).

Боковые ребра – общие стороны боковых граней ( параллельны между собой и равны ).

Диагональ – отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.

Высота призмы – перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания.

Диагональная плоскость – плоскость, проходящая через боковое ребро призмы и диагональ основания.

Диагональное сечение –пересечение призмы и диагональной плоскости.

Перпендикулярное сечение – пересечение призмы и плоскости, перпендикулярной ее боковому ребру.

Различают призмы прямые (боковые ребра перпендикулярны плоскости основания) и наклонные (не прямые).

Среди прямых призм выделяют правильные.

Правильная призма – это прямая призма, основанием которой является правильный многоугольник (равносторонний треугольник, квадрат, правильный шестиугольник и т.п.).

Частным случаем призмы является параллелепипед .

Параллелепипед – это призма, основаниями которой являются параллелограммы.

Среди параллелепипедов выделяют наклонные, прямые и прямоугольные параллелепипеды.

Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани — прямоугольники.

Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники (или прямой параллелепипед с прямоугольником в основании).

Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Частный случай прямоугольного параллелепипеда – куб.

Куб – прямоугольный параллелепипед, все грани которого – квадраты.

Далее – обещанная таблица, в которой собраны все основные виды призмы, с которыми приходится встречаться на ЕГЭ по математике.

Смотрите также «Объем призмы. Площадь поверхности призмы».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

  • Вектора. Часть 1
  • Тела вращения. Конус
  • Тригонометрический круг II
  • Обратные тригонометрические функции
  • Квадрат
  • Простейшие тригонометрические неравенства. Часть 2

объясните пожалуйста вот это определение “Диагональное сечение –пересечение призмы и диагональной плоскости.”

Анатолий, это диагональное сечение вас так и будет преследовать, пока не разберетесь… Помню наш прошлый диалог на эту тему… ;)
Диагональная плоскость – плоскость, которая проходит через диагональ призмы. Плоскость бесконечна. Но она пересечет призму по некоторому многоугольнику. Вот он и есть диагональное сечение.

Просто рисунок с диагональный плоскостью следует и
справить – продлить за пределы призмы…

На рисунке изображено сечение диагональное. Сечение – многоугольник, а не плоскость.
Исправлять не буду.

Про сечение все понятно – после определения диагонального сечения на рисунке выделены в призме 2 многоугольника (в нашем случае диаг. сечения призмы), но по логике и последовательности чтения текста хочется увидеть как выглядит диагональная плоскость. Таким образом, по моему скромному мнению, нужно либо добавить еще один рисунок после определения диагональной плоскости, либо в рисунке с 2-мя многоугольниками в призме – один заменить на изображение плоскости…

Что такое призма — определение и разновидности призм

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы расскажем о такой интересной геометрической фигуре, как ПРИЗМА.

Школьники сталкиваются с ней на уроках геометрии только в 10 классе. Соответственно, те, кто решил уйти после 9-го класса в колледж, этих знаний лишены. И мы восполним этот пробел.

А старшеклассникам наша статья (очень на это надеемся) поможет при подготовке к сдаче ЕГЭ. На экзаменах по математике попадаются несколько вопросов, связанных с ПРИЗМАМИ.

Призма – это .

Призма – это геометрическая фигура, которая представляет собой объемный многогранник. Две его стороны лежат на параллельных основаниях и представляют собой различные многоугольники. А боковые грани – это параллелограммы, которые соединяются с основаниями.

Выглядит классическая призма так, как показано на рисунке выше.

На этом рисунке четко видны все элементы призмы:

  1. Основание – два многоугольника, которые параллельны друг другу;
  2. Боковые грани – четырехугольники, которые скрепляют оба основания и имеют с ними одинаковые грани.

В зависимости от вида основания призмы бывают:

    Треугольные – в основаниях находятся два треугольника.

Разнообразие призм можно считать бесконечным. Могут быть фигуры, у которых в основании и 10-угольник, и 20-угольник, и даже 100-угольник. Но, к счастью, такие фигуры попадаются крайне редко. И их точно не изучают в школе.

История изучения призмы

О существовании призм знали еще в Древнем Египте и Древнем Вавилоне. Об этом свидетельствуют различные археологические находки, прежде всего, остатки зданий и памятников.

Но научное описание призм – это заслуга древнегреческих математиков. В первую очередь, Аристотеля. Он даже целое направление науки придумал – стереометрией. В переводе с греческого это означает измерение пространства («метрио» — измерение, «стереос» — пространство).

И в рамках этой науки Аристотель занимался изучением призм, кубов, параллелепипедов и других объемных геометрических фигур.

Естественно, не обошел своим вниманием призмы и знаменитый древнегреческий математик и ученый – Евклид. В своих трудах он дает следующее описание:

Призма – это телесная (то есть пространственная) фигура, которая заключена между несколькими плоскостями. Две из них параллельны друг другу, равны и противоположны. А другие в любом количестве представляют собой параллелограммы.

Кстати, само слово «призма» также имеет древнегреческие корни. И означает оно «πρίσμα» — отпиленное. И действительно, внешне призма напоминает фигуру, которую взяли и вырезали из чего-то более длинного. Как будто ствол дерева распили на несколько поленьев.

Элементы призмы

Рассмотрим для примера такую вот призму.

Она пятиугольная и состоит из следующих элементов:

  1. Основание – их, как и положено, две штуки, в данном случае это пятиугольники ABCDE и KLMNP;
  2. Боковая грань – их количество равно количеству углов оснований, то есть тоже пять. Это параллелограммы ABKL, BCLM, CDMN, DENP и EAPK;
  3. Боковая поверхность – так называют сумму всех имеющихся боковых граней, которые мы перечислили выше;
  4. Полная поверхность – это сумма всех частей призмы;
  5. Боковое ребро – линии соединения боковых граней. В нашем случае это отрезки KA, LB, MC, ND и PE;
  6. Высота – отрезок, который соединяет основания призмы под прямым углом. В нашем случае KR. Это касается наклонных призм, у которых грани не перпендикулярны основаниям. В противном случае, высота совпадает с боковым ребром;
  7. Диагональ – отрезок (PВ), который соединяет две вершины призмы, не относящиеся к одной грани;
  8. Диагональная плоскость – плоскость, которая проходит через основание, боковую грань и диагональ. В нашем случае это BPE и BPL;
  9. Диагональное сечение – плоскость, которая образуется пересечением призмы и диагональной плоскостью. В нашем случае это параллелограмм BLPE. В частных случаях она может быть ромбом или квадратом.

Подобные элементы есть у каждой призмы, независимо от ее вида.

Разновидности призм

Все призмы можно поделить на три категории:

    Прямая призма – эта такая геометрическая фигура, у которой боковые грани соединяются с основаниями под прямым углом. Соответственно, они являются прямоугольниками. А саму призму часто еще называют прямоугольным параллелепипедом.

Читайте также  Как выбрать наручные женские часы

Вместо заключения

Слово ПРИЗМА используется не только в геометрии, хотя именно это значение считается главным. И именно оно первым записано во многих словарях. Но есть и другие варианты:

  1. Физика – устройство для преломления световых лучей.
  2. Риторика – оценка с учетом определенных факторов. Например, «Он смотрел на нее через призму прожитых лет» или «Он общался с ними через призму своего настроения».
  3. Техника – элемент металлорежущего станка, который предназначен для закрепления на нем цилиндрической заготовки.

А еще «Призма» — это кодовое название советской радиостанции 5-АК. Есть такой хоккейный клуб в Латвии – «Призма-Рига». И наконец, в Финляндии существует сеть продуктовых магазинов «PRISMA».

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (2)

Спасибо! Хорошая статья.

Бедные дети, зачем им забивают голову всякими геометрическими призмами? Вообще, если провести опрос среди взрослых, понадобилось ли кому-нибудь это знание, уверен, мы не услышим ни одного положительного ответа.

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 14. Призма

Перечень вопросов, рассматриваемых в теме:

  • Понятие призмы и виды призм;
  • Элементы призмы: вершины, ребра, грани;
  • Понятие площади боковой поверхности и площади полной поверхности призмы, формулы для вычисления;
  • Призма как модель реальных объектов;
  • Пространственная теорема Пифагора.

Глоссарий по теме

Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

Боковые грани – все грани, кроме оснований.

Боковые ребра – общие стороны боковых граней.

Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.

Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.

Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.

Площадь полной поверхности призмы – сумма площадей всех ее граней.

Площадь боковой поверхности призмы – сумма площадей ее боковых граней.

Параллелепипед – призма, все грани которой – параллелограммы.

Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,

геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.

Открытые электронные ресурсы:

Открытый банк заданий ФИПИ http://ege.fipi.ru/

Теоретический материал для самостоятельного изучения

Определение призмы. Элементы призмы.

Рассмотрим два равных многоугольника А1А2. Аn и В1В2. Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2. АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Рисунок 1 – Призма

Заметим, что каждый из n четырехугольников (A1A2B1B2, . AnA1B1Bn) является параллелограммом. Убедимся в этом на примере четырехугольника A1A2B1B2. A1A2 и B1B2 параллельны по свойству параллельных плоскостей, пересеченных третьей плоскостью. А1В1 и А2В2 по условию. Таким образом, в четырехугольнике A1A2B1B2 противоположные стороны попарно параллельны, значит этот четырехугольник — параллелограмм по определению.

Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.

Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).

Рисунок 2 – Наклонная призма

Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.

Высота прямой призмы равна ее боковому ребру.

На рисунке 3 приведены примеры прямых призм

Рисунок 3 – Виды призм.

Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.

Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.

Площадь полной поверхности призмы. Площадь боковой поверхности призмы.

Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.

Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.

Чему равна площадь боковой поверхности прямой призмы?

Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство

Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников. Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P. Таким образом Sбок=Pоснh.

Пространственная теорема Пифагора

Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.

Рисунок 4 – Прямоугольный параллелепипед

Доказательство

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.

Для этого рассмотрим треугольник А1АС:

Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.

По теореме Пифагора получаем: А1С 2 =АА1 2 +АС 2 (1).

Выразим теперь АС. По условию в основании лежит прямоугольник, значит ΔАВС – прямоугольный. По тереме Пифагора получаем: АС 2 =ВС 2 +АВ 2 .

Подставив результат в (1), получим: А1С 2 =АА1 2 +ВС 2 +АВ 2 .

Так как в основании прямоугольник, то ВС=АD.

Таким образом, А1С 2 =АА1 2 +АD 2 +АВ 2 .

Что и требовалось доказать

Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.

Примеры и разбор решения заданий тренировочного модуля

Найдите для каждой картинки пару

1)2) 3)

4)5)

6)

Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.

Какие из перечисленных объектов могут быть элементами призмы?

1) параллельные плоскости

Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.

Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: