Как вписать окружность в ромб

Ромб. Формулы, признаки и свойства ромба

Рис.1 Рис.2

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

a = S
ha

2. Формула стороны ромба через площадь и синус угла:

a = √ S
√ sinα
a = √ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:

a = S
2 r

4. Формула стороны ромба через две диагонали:

a = √ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a = d 1
√ 2 + 2 cosα
a = d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a = d 1
2 cos ( α /2)
a = d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a = d 2
2 cos ( β /2)
a = d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

a = Р
4

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

S = 1 d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S = 1 d 1 2 · tg ( α /2)
2
S = 1 d 2 2 · tg ( β /2)
2

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Ромб и его свойства

Сумма внутренних углов любого четырехугольника равна (360^circ) .

Свойства ромба:

(blacktriangleright) Те же, что и у параллелограмма:

(sim) Противоположные стороны попарно равны;

(sim) Диагонали точкой пересечения делятся пополам;

(sim) Противоположные углы попарно равны, а сумма соседних равна (180^circ) ;

(blacktriangleright) Диагонали взаимно перпендикулярны и являются биссектрисами углов ромба.

Признаки ромба.
Если для выпуклого четырехугольника выполнено одно из следующих условий, то это – ромб:

(blacktriangleright) все стороны равны;

(blacktriangleright) диагонали взаимно перпендикулярны и он является параллелограммом;

(blacktriangleright) диагонали являются биссектрисами углов и он является параллелограммом.

Площадь ромба

1. Т.к. ромб является параллелограммом, то для него верна та же формула площади. Таким образом, площадь ромба равна произведению высоты на основание, к которому эта высота проведена.

2. Площадь ромба равна половине произведения его диагоналей.

В ромбе (ABCD) : (angle ACD = 26^) . Найдите (angle ABD) . Ответ дайте в градусах.

В ромбе диагонали перпендикулярны, тогда (angle CDB = 90^ — angle ACD = 64^) .

(BC = CD) , тогда (angle CBD = angle CDB = 64^) .

Так как диагонали ромба делят его углы пополам, то (angle ABD = angle CBD = 64^) .

Найдите большую диагональ ромба (ABCD) , если (AB = 2sqrt<3>) , а острый угол равен половине тупого.

Так как сумма односторонних углов при параллельных прямых и секущей равна (180^) , то сумма острого и тупого углов ромба равна (180^) .

Так как в данном ромбе острый угол равен половине тупого, то острый угол ромба (ABCD) равен (60^) .

Треугольник (ABD) – равнобедренный, один из углов которого равен (60^) , тогда треугольник (ABD) – равносторонний и (BD = 2sqrt<3>) .

Пусть (O) – точка пересечения диагоналей ромба, тогда (OD = 0,5 BD = sqrt<3>) , следовательно, по теореме Пифагора находим: (AO^2 + OD^2 = AD^2) , тогда (AO^2 + 3 = 12) , откуда находим (AO = 3) . В ромбе, как и в любом другом параллелограмме, диагонали точкой пересечения делятся пополам, значит, (AC = 6) .

Острый угол ромба (ABCD) равен (60^) , одна из его сторон равна 10. Найдите меньшую из диагоналей этого ромба.

Пусть (angle A = 60^) . В ромбе все стороны равны, тогда треугольник (ABD) – равнобедренный, у которого один из углов равен (60^) , следовательно, треугольник (ABD) – равносторонний и (BD = 10) .

Треугольник (ABC) – тупоугольный. В треугольнике против большего угла лежит большая сторона, тогда (AC > AB = BD) , значит, (BD) – меньшая из диагоналей.

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно (3) , а острый угол ромба равен (60^circ) . Найдите большую диагональ ромба.

Пусть в ромбе (ABCD) : (O) – точка пересечения диагоналей, (OH) – расстояние до стороны (AB) , (angle DAB = 60^circ) , тогда (angle OAB = 30^circ) . Получаем, что (OH) – катет лежащий напротив угла в (30^circ) , значит (AO = 2cdot OH = 6) . Т.к. (AC) и есть большая диагональ, то (AC = 2cdot AO = 12) .

Сторона ромба равна (4) . Расстояние от точки пересечения его диагоналей до одной из сторон равно (1) . Найдите площадь ромба.

Пусть в ромбе (ABCD) : (O) – точка пересечения диагоналей, (OH) – расстояние до стороны (AB) , тогда (S_ = frac<1><2>cdot 1 cdot 4 = 2) . Диагонали ромба делят его на (4) равных прямоугольных треугольника (Rightarrow) (S_ = 4cdot 2 = 8) .

Периметр ромба равен (40) , а диагонали относятся, как (3:4) . Найдите площадь ромба.

Половины диагоналей находятся в таком же отношении, как и диагонали, то есть в отношении (3:4) . Зная периметр, найдем сторону ромба: (40 : 4 = 10) . Сторона и половинки диагоналей образуют прямоугольный треугольник (AOB) .

Пусть (AO=4x) , (BO=3x) .
Тогда по теореме Пифагора: ((3x)^2 + (4x)^2 = 10^2) (Rightarrow) (25x^2 = 100) (Rightarrow) (x^2 = 4) (Rightarrow) (x = 2) . Диагонали равны (BD=2BO=12) и (AC=2AO=16) (Rightarrow) (S_ = frac<1><2>cdot12cdot16 = 96) .

Во сколько раз отличаются площади ромбов, имеющие по равному углу, у которых стороны относятся как (3:1) ?

Пусть (angle B) и (angle B_1) – равные углы ромбов. Так как стороны ромбов относятся как (3:1) , то можно обозначить их за (3x) и (x) соответственно.

Читайте также  Как добраться до Пулково-3

Тогда и (angle D=angle D_1) (так как у ромба противоположные углы равны). Следовательно, (triangle ABCsim triangle A_1B_1C_1) и (triangle ADCsimtriangle A_1D_1C_1) по двум пропорциональным сторонам и углу между ними, причем коэффициент подобия этих треугольников равен (3) . Следовательно, их площади относятся как (9:1) . А так как (S_+S_=S_) и (S_+S_=S_) , то (S_1:S_2=9:1) .

Геометрические задачи на тему «Свойства ромба» в обязательном порядке включаются в ЕГЭ по математике. Причем, в зависимости от условия задания, учащийся может давать как краткий, так и развернутый ответ. Именно поэтому на этапе подготовки к сдаче ЕГЭ школьникам непременно стоит понять принцип решения задач на применение свойств и признаков ромба.

Еще раз повторить данную тему и восполнить пробелы в знаниях вам поможет образовательный проект «Школково». С помощью нашего сайта можно легко и эффективно подготовиться к ЕГЭ по математике.

Чтобы успешно справляться с геометрическими заданиями, учащимся старших классов стоит повторить базовые понятия и определения: свойства углов ромба и других четырехугольников, признаки этой фигуры, а также формулу для нахождения ее площади. Данный материал представлен в разделе «Теоретическая справка» на сайте «Школково». Информация, которую подготовили наши специалисты, изложена в максимально доступной форме.

Повторив основные свойства диагоналей ромба, а также его углов и биссектрис, учащиеся могут попрактиковаться в выполнении упражнений. Большая подборка заданий по данной теме, а также по решению нестандартных задач по математике представлена в разделе «Каталог». Найти правильный ответ выпускники смогут, предварительно освежив в памяти свойства биссектрис ромба, в также углов и диагоналей этой фигуры. Подробный алгоритм решения каждой задачи прописан нашими специалистами.

Выполнять простые и более сложные задания по теме «Ромб и его свойства», а также на нахождение площади квадрата на этапе подготовки к ЕГЭ по математике школьники из Москвы и других городов могут в режиме онлайн. При необходимости любое упражнение можно сохранить в разделе «Избранное». Это позволит в дальнейшем быстро найти это задание и, к примеру, обсудить алгоритм его решения со школьным преподавателем.

Как вписать окружность в ромб

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

    $$ , где S — площадь треугольника, а $$p =frac<2>$$ — полупериметр треугольника.

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

  • Вокруг любого треугольника можно описать окружность, и только одну.
  • В любом треугольнике сторона равна произведению диаметра описанной окружности и синуса противолежащего угла.
  • Площадь треугольника равна отношению произведения длин всех его сторон к учетверенному радиусу окружности, описанной около этого треугольника: $$R =frac<4S>$$, где S — площадь треугольника.
  • Центр вневписанной окружности лежит на пересечении биссектрис внешних углов, при вершинах касаемой стороны, и биссектрисы угла при третей вершине.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

  • Центр описанной окружности совпадает с серединой гипотенузы.
  • Радиус равен половине гипотенузы: $$R = frac<2>$$.
  • Радиус равен медиане, проведенной к гипотенузе: $$R = m_$$.

Четырехугольник, вписанный в окружность

  • Четырехугольник можно вписать в окружность, если сумма противолежащих углов равна $$180^circ: alpha + beta + gamma +delta = 180^circ$$.
  • Если четырехугольник вписан в окружность, то суммы противолежащих углов равны $$180^circ$$.
  • Сумма произведений противолежащих сторон четырехугольника ABCD равна произведению диагоналей: $$ABcdot DC + AD cdot BC = BD cdot AC$$.
  • Площадь: $$S = sqrt<(p-a)(p-b)(p-c)(p-d)>$$, где $$p = frac<2>$$ — полупериметр четырехугольника.

Окружность, вписанная в ромб

  • В любой ромб можно вписать окружность.
  • Радиус r вписанной окружности: $$r = frac<2>$$, где h — высота ромба или $$r = frac cdot d_<2>><4a>$$, где a — сторона ромба, d1 и d2 — диагонали ромба.

Как вписать окружность в ромб

§ 14. Построение аксонометрических проекций окружности

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.


Рис. 92. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.


Рис. 93. Фронтальные диметрические проекции деталей

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием. Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.


Рис. 94. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.


Рис. 95. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) — на осях х и z (рис. 97, б).


Рис. 96. Построение овала в плоскости, перпендикулярной оси z


Рис. 97. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).


Рис. 98. Построение изометрической проекции летали с цилиндрическим отверстием

Ответьте на вопросы

1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию ?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42

На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба — верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?


Рис. 99. Задание для упражнений

Упражнение 43

Запишите, какой оси (х, у или z) перпендикулярны плоскости овала на рис. 100. В какой аксонометрической проекции даны здесь окружности?


Рис. 100. Задание для упражнений

Упражнение 44

В каких аксонометрических проекциях даны окружности на рис. 101? Какой оси перпендикулярна плоскость каждой из них?


Рис. 101. Задание для упражнений

Упражнение 45

Запишите, в каких аксонометрических проекциях даны геометрические тела на рис. 102.

Каким осям (х, у или z) параллельна высота каждого из них?


Рис. 102. Геометрические тела для задания для упраждений

Упражнение 46

Постройте изометрическую проекцию куба, сторона которого равна 70 мм. Впишите в три грани куба овалы — изометрические проекции окружностей (см. рис. 95).

Площадь ромба – формула, пример расчет, как начертить

Через диагонали

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Свойства ромба

На рисунке выше ( ABCD ) – ромб, ( AC = DB = CD = AD ) . Так как ромб – это параллелограмм, то он обладает всеми свойствами параллелограмма, но так же есть свойства присущие только ромбу.

В любой ромб можно вписать окружность. Центр окружности, вписанной в ромб, является точкой пересечения его диагоналей. Радиус окружности равен половине высоты ромба:

Формула вычисления площади

1. По длине стороны и высоте:

Площадь ромба (S) равняется произведению длины его стороны и высоты, проведенной к ней:

S = a*h

2. По длине стороны и углу

Площадь ромба равняется произведению квадрата длины его стороны и синуса угла между сторонами:

S = a 2 *sin α

3. По длинам диагоналей

Площадь ромба равна одной второй произведения его диагоналей.

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Примеры задач

Задание 1
Найдите площадь ромба, если длина его стороны равна 10 см, а высота, проведенная к ней – 8 см.

Решение:
Используем первую формулу, рассмотренную выше: S = 10 см * 8 см = 80 см 2 .

Задание 2
Найдите площадь ромба, сторона которого равняется 6 см, а острый угол – 30°.

Решение:
Применим вторую формулу, в которой используются известные по условиям задания величины: S = (6 см) 2 * sin 30° = 36 см 2 * 1/2 = 18 см 2 .

Задание 3
Найдите площадь ромба, если его диагоналей равны 4 и 8 см, соответственно.

Решение:
Воспользуемся третьей формулой, в которой используются длины диагоналей: S = 1/2 * 4 см * 8 см = 16 см 2 .

Через основание и высоту

Высоты ромба h Сторона ромба а

Площади фигур

Расчет площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции, ромба, круга (площадь фигур). Площади фигур

Площадь ромба по углу и противолежащей диагонали

Площадь ромба по углу и диагонали проведенной из этого угла

Способ расчета площади ромба

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.
Формула площади ромба: ,
где a – стороны, h – высота

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.
Формула площади ромба: ,
где d1, d2 – диагонали

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.
Формула площади ромба: ,
где a – сторона, α – угол между сторонами

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.
Формула площади ромба:
где r – радиус вписанной окружности, α – угол между сторонами

Ромб – это параллелограмм, у которого все стороны равны. Ромб у которого все углы прямые называется квадратом.
Формула площади ромба: ,
где r – радиус вписанной окружности, a – сторона

Формула площади ромба через две стороны и угол между ними

a — сторона ромба;

— любой угол ромба.

Найти площадь ромба, если каждая из его сторон равна 10 см, а угол между двумя смежными сторонами равен 30 градусам.

Решение

По формуле получаем:

S = a 2 ⋅ sin ( α ) = 1 0 0 ⋅ sin ( 3 0 ∘ ) = 5 0 (см. кв.)

Ответ: 50 см. кв.

Формула площади ромба через угол и радиус вписанной окружности

Формула площади ромба через сторону и угол

Таблица с формулами площади ромба

В зависимости от известных исходных данных, площадь ромба можно вычислить по различным формулам.

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 сторона и высота
2 диагонали
3 диагональ и угол между сторонами
4 диагональ и угол между сторонами
5 сторона и угол между сторонами
6 радиус вписанной окружности и угол между сторонами
7 сторона и радиус вписанной окружности

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.
Длину стороны ромба можно найти за формулами указанными выше.

Радиус описанной и вписанной окружности: Формулы и примеры

Здравствуйте мои дорогие подписчики и гости сайта 9111.ru!

На самом деле эту тему проходят еще в начальных классах обычной школы. И все, кто хорошо учился, сразу смогут сказать, о чем идет речь. Ну, или хотя бы точно понять, что РАДИУС как-то связан с окружностью.

Что такое радиус

И действительно:

Радиус – это отрезок, который начинается в центре окружности и заканчивается в любой точке ее поверхности. В то же время так называется и длина этого отрезка.

Вот так это выглядит графически.

Само слово РАДИУС имеет латинские корни. Оно произошло от «radius», что можно перевести как «луч» или «спица колеса». Впервые этот математический термин ввел французский ученый П.Ромус. Было это в 1569 году.

Но потребовалось чуть более ста лет, чтобы слово РАДИУС прижилось и стало общепринятым.

Кстати, есть еще несколько значений слова РАДИУС:

  • Размер охвата чего-нибудь или сфера распространения. Например, говорят «Огонь уничтожил все в радиусе 10 километров» или «ОН показал на карте радиус действия артиллерии»;
  • В анатомии этим словом обозначают Лучевую кость предплечья.

Но, конечно, нас интересует РАДИУС как математический термин. А потому и продолжим говорить именно о нем.

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

Примеры задач

Длина окружности равняется 87,92 см. Найдите ее радиус.

Используем первую формулу (через периметр):

Найдите радиус круга, если его площадь составляет 254,34 см 2.

Воспользуемся формулой, выраженной через площадь фигуры:

Формулы для радиуса описанной окружности

Найти радиус описанной окружности треугольника по сторонам

Формула радиуса описанной окружности треугольника (R ) :

Найти радиус описанной окружности равностороннего треугольника по стороне или высоте

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Найти радиус описанной окружности равнобедренного треугольника по сторонам

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

Формула радиуса описанной окружности равнобедренного треугольника (R):

Найти радиус описанной окружности прямоугольного треугольника по катетам

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

Формула радиуса описанной окружности прямоугольного треугольника (R):

Радиус описанной окружности трапеции по сторонам и диагонали

Формула радиуса описанной окружности равнобокой трапеции, (R)

Найти радиус описанной окружности около квадрата

Радиус описанной окружности квадрата равен половине его диагонали

Формула радиуса описанной окружности квадрата (R):

Радиус описанной окружности прямоугольника по сторонам

Радиус описанной окружности прямоугольника равен половине его диагонали

Формула радиуса описанной окружности прямоугольника (R):

Радиус описанной окружности правильного многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Радиус описанной окружности правильного шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

Формула радиуса вписанной окружности в треугольник (r):

Радиус вписанной окружности в равносторонний треугольник

Формула для радиуса вписанной окружности в равносторонний треугольник (r):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны (r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол (r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту (r ) :

Радиус вписанной окружности в прямоугольный треугольник

Формула радиуса вписанной окружности в прямоугольный треугольник (r):

Радиус вписанной окружности в равнобочную трапецию

Формула радиуса вписанной окружности равнобочной трапеции (r):

Радиус вписанной окружности в квадрат

Формула радиуса вписанной окружности в квадрат (r):

Радиус вписанной окружности в ромб

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Формула радиуса вписанной окружности в ромб через диагонали (r ) :

Формула радиуса вписанной окружности в ромб через сторону и угол (r ) :

Формула радиуса вписанной окружности в ромб через диагональ и угол (r ) :

Формула радиуса вписанной окружности в ромб через диагональ и сторону (r ) :

2. Радиус вписанной окружности ромба, равен половине его высоты

Формула радиуса вписанной окружности в ромб (r ) :

Радиус вписанной окружности в правильный многоугольник

Формула радиуса вписанной окружности в правильный многоугольник, (r):

Радиус вписанной окружности в шестиугольник

Формула радиуса вписанной окружности в шестиугольник, (r):

Примеры задач

Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

Остается только применить соответствующую формулу для вычисления радиуса круга:

Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

Воспользуемся подходящей формулой, подставив в нее известные значения:

Всем спасибо и приятного просмотра! Если понравилась публикация подписывайтесь и ставьте палец вверх!

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: