Как доказать непрерывность функции

Как доказать непрерывность функции

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ain R`, за исключением, быть может, самой точки `a`.

Число `A` называется пределом функции `y=f(x)` в точке `a`, если для любой последовательности `(x_n)` из области её определения такой, что `x_n!=a` и `lim_(n->oo)x_n=a` выполняется равенство `lim_(n->oo)f(x_n)=A`.

Обозначение: `lim_(n->oo)f(x)=A`, или `f(x)->A` при `x->a`.

В определении предела рассматриваются значения `x_n`, не равные `a`, поэтому в самой точке `a` функция `y=f(x)` может быть не определена; если значение `f(a)` определено, то оно не обязано совпадать с `A`. К тому же, поскольку последовательность `(f(x_n))` имеет не более одного предела, получаем, что если функция `y=f(x)` имеет предел при `x->a`, то этот предел единственный.

На рис. 2 изображена лишь одна последовательность `(x_n)`, которая к тому же является монотонной. Важно понимать, что `lim_(n->oo)f(x_n)=A` для любой последовательности `(x_n)` с условием `x_n!=a` и `lim_(n->oo)x_n=a`.

Доказать, что `lim_(n->oo)x=a`.

Очевидно, функция `f(x)=x` определена на любом интервале, содержащем `a`. Выберем произвольную последовательность `(x_n)` такую, что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда `f(x_n)=x_n` и, значит, `lim_(n->oo)f(x_n)=a`.

Доказать, что при `a>0lim_(n->a)sqrtx=sqrta`.

Функция `f(x)=sqrtx` определена при `x>=0` и, следовательно, определена на некотором интервале, содержащем `a`. Выберем произвольную последовательность неотрицательных чисел `x_n!=a`, что `lim_(n->oo)x_n=a`. Нам нужно показать, что `lim_(n->oo)sqrtx_n=sqrta`. Фиксируем произвольное `epsilon>0`, тогда найдётся такое число `k`, что при `n>k` выполняется неравенство `|x_n-a| 1)(x^2-1)/(x-1)=2`.

Функция `f(x)=(x^2-1)/(x-1)` определена на любом интервале, содержащем `x=1`, кроме этой точки. Поскольку при `x!=1` имеет место равенство `f(x)=x+1`, то для любой последовательности `(x_n)` такой, что `x_n!=1` и `lim_(n->oo)x_n=1` выполняется `lim_(n->oo)f(x_n)=lim_(n->oo)x_n+1=2`.

Пусть функции `y=f(x)`, `y=g(x)` определены на некотором интервале, содержащем точку `a in R`, за исключением, быть может, самой точки `a`, `lim_(x->a)f(x)=A` и `lim_(x->a)g(x)=B`. Тогда

3) если дополнительно `g(x)!=0` при `x!=a`, `B!=0`, то `lim_(x->a)(f(x))/(g(x))=A/B`.

Эти свойства вытекают из арифметических операций над пределами последовательностей (теорема 2.2). Приведём доказательство для свойства 2. Остальные доказываются аналогично.

Пусть некоторая произвольная последовательность `(x_n)` из интервала, на котором определены функции, такова что `x_n!=a` и `lim_(n->oo)x_n=a`. Тогда по определению предела функции `lim_(n->oo)f(x_n)=A` и `lim_(n->oo)g(x_n)=B`. По пункту 2 теоремы 2.2 `lim_(n->oo)f(x_n)g(x_n)=AB`. По определению предела функции получаем, что `lim_(x->a)f(x)g(x)=AB`.

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `a`. Функция `y=f(x)`называется непрерывной в точке `a`, если `lim_(x->a)f(x)=f(a)`, т. е. если для любой последовательности `(x_n)` из области определения функции такой, что `lim_(n->oo)x_n=a`, выполняется равенство `lim_(n->oo)f(x_n)=f(a)`.

Отметим два обстоятельства, связанных с определением непрерывности. Во-первых, оговорка `x_n!=a` здесь не нужна, т. к. при `x_n=a` значения `f(x_n)` равны `f(a)`. Во-вторых, важно понимать, что если функция `y=f(x)` непрерывна в точке `a`, то

1) она определена в точке `a`;

2) существует `lim_(x->a)f(x)=A` и

Если хотя бы один из пунктов 1) – 3) не выполнен, то функция не является непрерывной в точке `a`.

Многочлен является непрерывной на всей числовой прямой функцией.

Пусть `P(x)=a_nx^n+a_(n-1)x^(n-1)+. +a_1x+a_0` — многочлен степени `n, a in R`. Нам нужно показать, что `lim_(x->a)P(x)=P(a)`. В силу примера 3.1 `lim_(x->a)x=a`,, а в силу примера 2.1 для константы `c` ‑ `lim_(x->a)c=c`. Последовательно применяя пункт 2 теоремы 3.1, получаем, что `lim_(x->a)cx^m=ca^m` при любом натуральном `m`. Осталось `n+1` раз применить пункт 1 теоремы 3.1 и заключить, что `lim_(x->a)P(x)=P(a)`.

Из теоремы 3.1 вытекает, что если функции `y=f(x)`, `y=g(x)` непрерывны в точке `a`, то функции `y=f(x)+-g(x)`, `y=f(x)g(x)`, `y=f(x)//g(x)` `(g(a)!=0)` также непрерывны в `a`.

Функция называется непрерывной на множестве, если она непрерывна в каждой точке этого множества.

Функция `y=|x|` непрерывна на всей числовой прямой.

Функция `y=|x|` на промежутке `(-oo;0)` совпадает с функцией `y=-x`, а на промежутке `(0;+oo)` — с функцией `y=x`, которые непрерывны на этих промежутках. Осталось исследовать на непрерывность данную функцию в точке `x=0`. Поскольку `||x_n|-0|=|x_n-0|`, то для любой последовательности `(x_n)` такой, что `lim_(n->oo)x_n=0` верно `lim_(n->oo)|x_n|=0`. По определению `lim_(x->0)|x|=0`, функция `y=|x|` непрерывна в точке `x=0`.

Вообще, все элементарные функции, изучаемые в школьном курсе, непрерывны в каждой точке, в окрестности которой эти функции определены.

Как доказать непрерывность функции

Рассмотрим функцию (fleft( x right)), которая отображает множество действительных чисел (mathbb) на другое подмножество (B) действительных чисел. Говорят, что функция (fleft( x right)) является непрерывной в точке (a in mathbb), если для любого числа (varepsilon > 0) существует число (delta > 0), такое, что для всех (x in mathbb), удовлетворяющих соотношению [left| right| непрерывной на данном интервале , если она непрерывна в каждой точке этого интервала.

Теорема 1.
Пусть функция (fleft( x right)) непрерывна в точке (x = a) и (C) является константой. Тогда функция (Cfleft( x right)) также непрерывна при (x = a).

Теорема 2.
Даны две функции () и (), непрерывные в точке (x = a). Тогда сумма этих функций ( + ) также непрерывна в точке (x = a).

Теорема 3.
Предположим, что две функции () и () непрерывны в точке (x = a). Тогда произведение этих функций ( ) также непрерывно в точке (x = a).

Теорема 4.
Даны две функции () и (), непрерывные при (x = a). Тогда отношение этих функций (largefrac<><>normalsize) также непрерывно при (x = a) при условии, что ( ne 0).

Теорема 5.
Предположим, что функция () является дифференцируемой в точке (x = a). Тогда функция () непрерывна в этой точке (т.е. из дифференцируемости следует непрерывность функции в точке; обратное − неверно).

Теорема 6 (Теорема о предельном значении).
Если функция () непрерывна на закрытом и ограниченном интервале (left[ right]), то она ограничена сверху и снизу на данном интервале. Другими словами, существуют числа (m) и (M), такие, что [m le fleft( x right) le M] для всех (x) в интервале (left[ right]) (рисунок 1).

Теорема 7 (Теорема о промежуточном значении).
Пусть функция () непрерывна на закрытом и ограниченном интервале (left[ right]). Тогда, если (c) − некоторое число, большее () и меньшее (), то существует число (), такое, что [fleft( <> right) = c.] Данная теорема проиллюстрирована на рисунке 2.

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется элементарной , если она построена из конечного числа композиций и комбинаций
(с использованием (4) действий — сложение, вычитание, умножение и деление) основных элементарных функций . Множество основных элементарных функций включает в себя:

  1. Алгебраические многочлены (A + B> + ldots + Kx + L;)
  2. Рациональные дроби (largefrac <+ B> + ldots + Kx + L>><+ N> + ldots + Tx + U>>normalsize);
  3. Степенные функции ();
  4. Показательные функции ();
  5. Логарифмические функции (x);
  6. Тригонометрические функции (sin x), (cos x), (tan x), (cot x), (sec x), (csc x);
  7. Обратные тригонометрические функции (arcsin x), (arccos x), (arctan x), (textx), (textx), (textx);
  8. Гиперболические функции (sinh x), (cosh x), (tanh x), (coth x), (textx), (textx);
  9. Обратные гиперболические функции (textx), (textx), (textx), (textx), (textx), (textx).

Функция секанс (fleft( x right) = sec x = largefrac<1><>normalsize) определена для всех действительных (x), за исключением точек [x = frac <2>+ kpi ,;;k = 0, pm 1, pm 2, ldots ,] где косинус равен нулю. Обозначим дифференциал независимой переменной (x) через (Delta x). Вычислим соответствующий дифференциал функции (Delta y). [ right) — sec x > = <right)>> — frac<1><> > = right)>> <right)cos x>> > = ><2>> right)sin left( < - frac<><2>> right)>> <right)cos x>> > = ><2>> right)sin frac<><2>>> <right)cos x>>.> ] Перейдем к пределу при (Delta x to 0). [ Delta y = limlimits_ frac<<2sin left( ><2>> right)sin frac<><2>>> <right)cos x>> > = frac<<2sin left( ><2>> right)>> <right)cos x>> cdot limlimits_ sin frac<> <2>> = ><<<^2>x>> cdot 0 = 0.> ] Полученный результат справедлив для всех (x) за исключением нулей косинуса: [x = frac <2>+ kpi ,;;k = 0, pm 1, pm 2, ldots] Следовательно, область непрерывности и область определения функции (fleft( x right) = sec x) совпадают.

Непрерывность функций – теоремы и свойства

Определение непрерывности функции

Определение
Функция f ( x ) называется непрерывной в точке x , если она определена на некоторой окрестности этой точки, если существует предел при x стремящемся к x , и если этот предел равен значению функции в x :
.

Можно сформулировать понятие непрерывности в терминах приращений. Для этого мы вводим новую переменную , которая называется приращением переменной x в точке . Тогда функция непрерывна в точке , если
.
Введем новую функцию:
.
Ее называют приращением функции в точке . Тогда функция непрерывна в точке , если
.

Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x равен значению функции в x :
.

Свойства непрерывных в точке функций

Теорема об ограниченности непрерывной функции
Пусть функция f ( x ) непрерывна в точке x . Тогда существует такая окрестность U ( x ) , на которой функция ограничена.

Теорема о сохранении знака непрерывной функции
Пусть функция непрерывна в точке . И пусть она имеет положительное (отрицательное) значение в этой точке:
.
Тогда существует такая окрестность точки , на которой функция имеет положительное (отрицательное) значение:
при .

Арифметические свойства непрерывных функций
Пусть функции и непрерывны в точке .
Тогда функции , и непрерывны в .
Если , то и функция непрерывна в точке .

Свойство непрерывности слева и справа
Функция непрерывна в точке тогда и только тогда, когда она непрерывна в справа и слева.

Доказательства свойств приводятся на странице «Свойства непрерывных в точке функций».

Непрерывность сложной функции

Теорема о непрерывности сложной функции
Пусть функция t = g ( x ) непрерывна в точке x . И пусть функция f ( t ) непрерывна в точке t = g ( x ) .
Тогда сложная функция f ( g ( x )) непрерывна в точке x .
Доказательство

Предел сложной функции

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции t = g ( x ) при x → x , и он равен t :
.
Здесь точка x может быть конечной или бесконечно удаленной: .
И пусть функция f ( t ) непрерывна в точке t .
Тогда существует предел сложной функции f ( g ( x )) , и он равен f ( t ) :
.
Доказательство

Теорема о пределе сложной функции
Пусть функции и имеют пределы:
;
.
И пусть существует такая проколотая окрестность точки , на которой
.
Тогда существует предел сложной функции , и он равен :
.
Здесь – конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Доказательство

Точки разрыва

Определение точки разрыва
Пусть функция определена на некоторой проколотой окрестности точки . Точка называется точкой разрыва функции , если выполняется одно из двух условий:
1) не определена в ;
2) определена в , но не является непрерывной ⇑ в этой точке.

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода, если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва, если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва – это точка разрыва 1-го рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка называется точкой разрыва второго рода, если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Свойства функций, непрерывных на отрезке

Определение функции, непрерывной на отрезке
Функция называется непрерывной на отрезке (при ), если она непрерывна во всех точках открытого интервала (при ) и непрерывна справа и слева ⇑ в точках a и b , соответственно.

Первая теорема Вейерштрасса об ограниченности непрерывной на отрезке функции
Если функция непрерывна на отрезке , то она ограничена на этом отрезке.

Определение достижимости максимума (минимума)
Функция достигает своего максимума (минимума) на множестве , если существует такой аргумент , для которого
для всех .

Определение достижимости верхней (нижней) грани
Функция достигает своей верхней (нижней) грани на множестве , если существует такой аргумент , для которого
.

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции
Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.

Теорема Больцано – Коши о промежуточном значении
Пусть функция непрерывна на отрезке . И пусть C есть произвольное число, находящееся между значениями функции на концах отрезка: и . Тогда существует точка , для которой
.

Следствие 1
Пусть функция непрерывна на отрезке . И пусть значения функции на концах отрезка имеют разные знаки: или . Тогда существует точка , значение функции в которой равно нулю:
.

Следствие 2
Пусть функция непрерывна на отрезке . И пусть . Тогда функция принимает на отрезке все значения из и только эти значения:
при .

Обратные функции

Определение обратной функции
Пусть функция имеет область определения X и множество значений Y . И пусть она обладает свойством:
для всех .
Тогда для любого элемента из множества Y можно поставить в соответствие только один элемент множества X , для которого . Такое соответствие определяет функцию, которая называется обратной функцией к . Обратная функция обозначается так:
.

Из определения следует, что
;
для всех ;
для всех .

Лемма о взаимной монотонности прямой и обратной функций
Если функция строго возрастает (убывает), то существует обратная функция , которая также строго возрастает (убывает).

Свойство о симметрии графиков прямой и обратной функций
Графики прямой и обратной функций симметричны относительно прямой .

Теорема о существовании и непрерывности обратной функции на отрезке
Пусть функция непрерывна и строго возрастает (строго убывает) на отрезке . Тогда на отрезке определена и непрерывна обратная функция , которая строго возрастает (строго убывает).
Для возрастающей функции .
Для убывающей: .

Теорема о существовании и непрерывности обратной функции на интервале
Пусть функция непрерывна и строго возрастает (строго убывает) на открытом конечном или бесконечном интервале . Тогда на интервале определена и непрерывна обратная функция , которая строго возрастает (строго убывает).
Для возрастающей функции .
Для убывающей: .

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Свойства и непрерывность элементарных функций

Элементарные функции и обратные к ним непрерывны на своей области определения. Далее мы приводим формулировки соответствующих теорем и даем ссылки на их доказательства.

Показательная функция

Показательная функция f ( x ) = a x , с основанием a > 0 – это предел последовательности
,
где есть произвольная последовательность рациональных чисел, стремящаяся к x :
.

Логарифм

Логарифмическая функция, или логарифм, y = log a x , с основанием a – это функция, обратная к показательной функции с основанием a .

Экспонента и натуральный логарифм

В определениях показательной функции и логарифма фигурирует постоянная a , которая называется основанием степени или основанием логарифма. В математическом анализе, в подавляющем большинстве случаев, получаются более простые вычисления, если в качестве основания использовать число e :
.
Показательную функцию с основанием e называют экспонентой: , а логарифм по основанию e – натуральным логарифмом: .

Степенная функция

Степенная функция с показателем степени p – это функция f ( x ) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f (0) = 0 p = 0 при p > 0 .

Здесь мы рассмотрим свойства степенной функции y = x p при неотрицательных значениях аргумента . Для рациональных , при нечетных m , степенная функция определена и для отрицательных x . В этом случае, ее свойства можно получить, используя четность или нечетность.
Эти случаи подробно рассмотрены и проиллюстрированы на странице «Степенная функция, ее свойства и графики».

Тригонометрические функции

Теорема о непрерывности тригонометрических функций
Тригонометрические функции: синус ( sin x ), косинус ( cos x ), тангенс ( tg x ) и котангенс ( ctg x ), непрерывны на своих областях определения.

Теорема о непрерывности обратных тригонометрических функций
Обратные тригонометрические функции: арксинус ( arcsin x ), арккосинус ( arccos x ), арктангенс ( arctg x ) и арккотангенс ( arcctg x ), непрерывны на своих областях определения.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Автор: Олег Одинцов . Опубликовано: 15-08-2018 Изменено: 09-06-2020

Непрерывность функции и точки разрыва

п.1. Приращение аргумента и приращение функции

п.2. Непрерывность функции в точке и на промежутке

На «языке ε-δ» определение непрерывности будет следующим:

ε-δ определение непрерывности похоже на ε-δ определение предела функции, с той разницей, что модуль (|x-x_0|) может быть равен 0 для непрерывной функции, т.е. сама точка (x_0) входит в δ-окрестность.

Проанализируем предел приращения функции: begin lim_triangle y= lim_left(f(x)-f(x_0)right)= lim_f(x)-lim_f(x_0)=\ =lim_f(x)-f(x_0) end т.к. (f(x_0)) — величина постоянная и от (triangle x) не зависит.
Для непрерывной функции: $$ lim_triangle y =0 Leftrightarrow lim_f(x)-f(x_0)=0Leftrightarrow lim_f(x)=f(x_0) $$ Учитывая, что (triangle xrightarrow 0Leftrightarrow x-x_0rightarrow 0Leftrightarrow xrightarrow x_0)
получаем (limf(x)=f(x_0).)

Все три представленных определения непрерывности функции в точке эквивалентны.
Существуют и другие эквивалентные определения. Мы дадим ещё одно из них дальше, в этом же параграфе.

п.3. Непрерывность функции на промежутке

Промежуток – это интервал, отрезок, луч и т.п. (см. §16 справочника для 8 класса).

График непрерывной функции – это непрерывная линия.
Кроме непрерывности, эта линия еще и «плавная», без «заломов».
При наличии заломов функция называется кусочно-непрерывной.


Непрерывная функция

Кусочно-непрерывная функция

п.4. Односторонние пределы

Рассмотрим гиперболу (y=frac<1>).

У этой гиперболы две асимптоты (y=0) и (x=2).
Точка (x_0=2) не входит в область определения.
Если мы будем приближаться к (x_0=2) слева , начав, например с 1,5, мы будем постепенно опускаться по ветке гиперболы на минус бесконечность. Т.е., левый предел: $$ lim_frac<1>=-infty $$

Если же мы будем приближаться к (x_0=2) справа , начав, например с 2,5, мы будем постепенно подниматься по ветке гиперболы на плюс бесконечность. Т.е., правый предел: $$ lim_frac<1>=+infty $$ Левый и правый пределы в точке (x_0=2) для данной гиперболы не равны: $$ lim_frac<1> ne lim_frac<1> $$

Теперь рассмотрим параболу (y=x^2-2)
Областью определения параболы является вся числовая прямая (xinmathbb)

В этом случае, если приближаться к (x_0=2) слева , мы получаем: $$ lim_(x^2-2)=2 $$ И если приближаться (x_0=2) справа , мы тоже получаем: $$ lim_(x^2-2)=2 $$ Левый и правый пределы равны: $$ lim_(x^2-2) =lim_(x^2-2) $$

Это еще одно определение непрерывности, которым удобно пользоваться на практике.

п.5. Классификация точек разрыва

Точки разрыва 1-го рода
Односторонние пределы существуют и конечны
Устранимые
Односторонние пределы равны между собой, но не равны (f(x_0))
Неустранимые (скачок)
Односторонние пределы не равны между собой
2-го рода
Хотя бы один из односторонних пределов бесконечен или не существует

п.6. Точки разрыва первого рода

Устранимые точки разрыва 1-го рода
Левый и правый пределы в точке (x_0) равны и конечны: $$ lim_f(x)=lim_f(x)=lim_f(x)=aneinfty $$ НО:
либо точка (x_0) НЕ принадлежит области определения функции (xnotin D);
либо предел НЕ равен значению функции в точке (x_0): (lim_f(x)ne f(x_0))

(y=frac, x_0=2)
Эта функция эквивалентна системе $$ y=frac Leftrightarrow begin y=x+2\ xne 2 end $$ При этом (lim_(x+2)=lim_(x+2)=4)
В точке (x_0=2notin D) функция имеет устранимый разрыв.

Разрыв можно устранить (функцию можно «склеить»), отдельно задав «гладкое» значение в особой точке: $$ y= begin frac, xne 2\ 4, x=2 end $$ В таком случае система станет эквивалентна всей прямой, т.е. станет непрерывной функцией: $$ y= begin frac, xne 2\ 4, x=2 end Leftrightarrow y=x+2 $$

Неустранимые точки разрыва 2-го рода (скачок)
Левый и правый пределы в точке (x_0) конечны, но не равны: $$ begin lim_f(x)=aneinfty\ lim_f(x)=bneinfty\ ane b end $$ Такой разрыв также называют скачком .
Величина скачка рассчитывается по формуле: $$ triangle y=lim_f(x)- lim_f(x)=b-a $$

п.7. Точки разрыва второго рода

В точках разрыва 2-го рода хотя бы один из односторонних пределов бесконечен или не существует.

(x_0=0ne D) — точка не входит в ОДЗ
Односторонние пределы: begin lim_e^frac1x=e^<-0>>=e^<-infty>=0\ lim_e^frac1x=e^<+0>>=e^<+infty>=+infty end Пределы не равны между собой, и один и них бесконечен.

На практике, при моделировании реальных процессов, разрывы 2-го рода в функциональных зависимостях встречаются довольно часто. Их положено заботливо анализировать и тщательно обходить, выбирая рабочие участки характеристических кривых, – чтобы «система не пошла в разнос».

п.8. Алгоритм исследования функции на непрерывность

На входе: функция (y=f(x))
Шаг 1. Найти ОДЗ функции, определить точки и промежутки, не принадлежащие ОДЗ.
Шаг 2. Составить множество точек, в которое входят точки и границы промежутков, не принадлежащие ОДЗ, а также – для кусочно-непрерывных функций – точки сшивания. Полученное множество состоит из точек, подозрительных на разрыв.
Шаг 3. Исследовать каждую из точек, подозрительных на разрыв, с помощью односторонних пределов. Если разрыв обнаружен, определить тип разрыва.
На выходе: список точек разрыва и тип разрыва для каждой точки.

п.9. Примеры

Пример 1. Исследуйте функцию на непрерывность:
a) ( y=frac )
ОДЗ: (x-1ne 0Rightarrow xne 1)
(x_0=1notin D) — точка не входит в ОДЗ, подозрительная на разрыв.
Найдем односторонние пределы: begin lim_frac=frac<1-0+3><1-0-1>=frac<4><-0>=-infty\ lim_frac=frac<1+0+3><1+0-1>=frac<4><+0>=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_0=1) — точка разрыва 2-го рода.

б) ( y=frac-2> )
ОДЗ: ( begin x+2geq 0\ sqrt-2ne 0 end Rightarrow begin xgeq -2\ sqrtne 2 end Rightarrow begin xgeq -2\ xne 2 end )
(x_0=-2) — левая граница ОДЗ
(x_1=2notin D)- точка не входит в ОДЗ
Точки (x_0) и (x_1) — подозрительные на разрыв

Исследуем (x_0=-2). Найдем односторонние пределы: begin lim_frac-2> — text<предел не существует>\ lim_frac-2>=frac<-2+0>-2>=frac<-2><-2>=1 end Один из односторонних пределов не существует.
Точка (x_0=-2) — точка разрыва 2-го рода.

Исследуем (x_1=2). Найдем односторонние пределы: begin lim_frac-2> =frac<2-0>-2>=frac<2><-0>=-infty\ lim_frac-2>=frac<2+0>-2>=frac<2><+0>=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_1=2) — точка разрыва 2-го рода.

в) ( y=frac <3x>)
ОДЗ: (xne 0)
(x_0=0notin D)- точка не входит в ОДЗ, подозрительная на разрыв
Найдем односторонние пределы: begin lim_frac<3x>=frac13lim_frac=frac13cdot 1=frac13\ lim_frac<3x>=frac13lim_frac=frac13cdot 1=frac13 end Односторонние пределы конечны и равны.
Точка (x_0=0) — точка разрыва 1-го рода, устранимый разрыв.

г) ( y= begin x+1, xlt 3\ x^2+3, xgeq 3 end )
ОДЗ: (xinmathbb)
(x_0=3)- точка сшивания, подозрительная на разрыв.
Найдем односторонние пределы: begin lim_y=lim_(x+1)=3+1=4\ lim_y=lim_(x^2+3)=3^2+3=12 end Односторонние пределы конечны, но неравны.
Точка (x_0=3) — точка разрыва 1-го рода, неустранимый разрыв (скачок).
Величина скачка: (lim_y-lim_y=12-4=8)

Пример 2. Доопределите функцию в точке разрыва так, чтобы она стала непрерывной в этой точке:
a) ( y=frac<2x^3-x^2> <7x>)
ОДЗ: (xne 0)
(x_0=0notin D)- точка не входит в ОДЗ, подозрительная на разрыв.
Упростим выражение: (frac<2x^3-x^2><7x>=frac<7x>=frac<7>) $$ y=frac<2x^3-x^2><7x>Leftrightarrow y= begin frac<7>\ xne 0 end $$ Найдем односторонние пределы: begin lim_frac<7>=0, lim_frac<7>=0 end Односторонние пределы конечны и равны.
Точка (x_0=0) — точка разрыва 1-го рода, устранимый разрыв.
Доопределить функцию нужно значением предела в точке разрыва: (y(0)=0).
Доопределенная непрерывная функция: $$ y= begin frac<2x^3-x^2><7x>, xne 0\ 0, x=0 end $$ б) ( y=frac<1-cos4x> )
ОДЗ: (xne 0)
(x_0=0notin D)- точка не входит в ОДЗ, подозрительная на разрыв.
Упростим выражение: (frac<1-cos4x>=frac<2sin^2 2x>=frac<2sin^2 2x><4>>=8left(frac<2x>right)^2) $$ y=frac<1-cos4x>Leftrightarrow y= begin 8left(frac<2x>right)^2\ xne 0 end $$ Найдем односторонние пределы: begin lim_8left(frac<2x>right)^2=8cdot 1=8, lim_8left(frac<2x>right)^2=8cdot 1=8 end Односторонние пределы конечны и равны.
Точка (x_0=0) — точка разрыва 1-го рода, устранимый разрыв.
Доопределить функцию нужно значением предела в точке разрыва: (y(0)=8).
Доопределенная непрерывная функция: $$ y= begin frac<1-cos4x>, xne 0\ 8, x=0 end $$

Математический анализ
Записки лекций

Илья Щуров (НИУ ВШЭ)

13 Непрерывность

13.1 Непрерывность функции в точке

13.1.1 Определение непрерывности

Как видно из этого определения, чтобы функция была непрерывной в некоторой точке, она должна как минимум быть определена в этой точке и иметь в ней предел. Если какое-то из этих условий нарушается, функция не является непрерывной автоматически. Наконец, может статься, что и значение функции в точке x 0 есть, и предел есть, но они не равны друг другу. В этом случае функция также не является непрерывной в точке x 0 .

Условие (13.1) можно переписать в кванторах:

13.1.2 Односторонняя непрерывность

Аналогично определяется непрерывность слева.

13.1.3 Какие функции непрерывны

Например, все вычисления на компьютере с вещественными числами происходят с некоторыми погрешностями: компьютер не может запомнить бесконечное число цифр после запятой, и постоянно прибегает к округлениям. Если бы не непрерывность, компьютерные вычисления были бы в основном бессмысленными.

Поэтому очень важно понимать, какие функции являются непрерывными, и в каких случаях непрерывность может нарушаться. К счастью, те функции, которые нас интересуют, часто являются непрерывными на своей области определения.

Остальные утверждения доказываются аналогично. ∎

На семинарах мы также докажем непрерывность синуса, косинуса, тангенса, экспоненты, логарифма, квадратного корня на всей области определения. Ниже мы докажем ещё одну важную теорему — о непрерывности композиции — но пока давайте поговорим, что бывает, когда непрерывность нарушается.

13.2 Разрывы

Какими бывают разрывы? Тут принята такая немножко условия классификация.

13.2.1 Разрывы первого рода

Если односторонние пределы существуют, они могут совпадать, а могут не совпадать. Если они совпадают (и равны какому-то числу b ), существует предел lim x → x 0 f ( x ) и тоже равен числу b . (См. упражнение 3 из лекции 10 .) Поскольку функция не является непрерывной в x 0 , либо f ( x 0 ) не определено, либо f ( x 0 ) ≠ b . Такой тип разрывов называется устранимым: достаточно «отредактировать» (доопределить или переопределить) значение функции f в единственной точке x 0 , чтобы она стала непрерывной, то есть разрыв был бы устранён.

Если односторонние пределы существуют, но различны, такой разрыв называется скачком.

13.2.2 Разрывы второго рода

Какими они бывают?

Может статься, что предел f ( x ) при x → x 0 не существует, но при этом равен бесконечности (вы ведь помните, что когда предел равен бесконечности, он не существует?). Такие разрывы мы будем называть полюсами.

Всё остальное будем называть существенными разрывами. (Тут терминология может быть не очень однозначной и разные источники могут вкладывать несколько разный смысл. Например, можно считать полюсом любой разрыв с вертикальной асимптотой. Но мы будем придерживаться этих определений.)

13.3 Непрерывность композиции

13.3.1 Сложные функции

13.3.2 Предел сложной функции

Хочется ответить утвердительно. Действительно, если x → x 0 , согласно первому пределу (13.3) , f ( x ) становится близок к y 0 . В третьем пределе (13.5) мы подставляем g именно f ( x ) , а из второго предела следует, что если аргумент функции g близок к y 0 , то значение g близко к b . Казалось бы, что может пойти не так?

Верный ответ. Утверждение (13.4) говорит, что g ( y ) становится близок к b , если y близок к y 0 , но не равен y 0 . В нашем случае f ( y ) равен y 0 = 0 во всех точках. Вместе с нарушением непрерывности функции g ( y ) , это приводит к проблеме.

Теперь сформулируем правильное утверждение.

Нам дано. Первый предел:

Выбор δ ( ε ) . Согласно (13.10) , мы можем добиться, чтобы g ( y ) был ε -близок к g ( y 0 ) , если потребуем, чтобы y был δ 2 ( ε ) -близок к y 0 . Чтобы значение f ( x ) было δ 2 ( ε ) -близким к y 0 , достаточно в (13.9) положить ε 1 = δ 2 ( ε ) и потребовать, чтобы x лежал в соответствующей δ 2 -окрестности точки x 0 . В этом случае | f ( x ) − y 0 | ε 1 = δ 2 ( ε ) и мы победили.

Итак, искомая δ задаётся следующим образом:

Неверный ответ. Разве π / x всюду непрерывна?

Неверный ответ. Думаете, только в нуле? В этом выражении больше, чем один знаменатель.

Верный ответ. Верно! Во-первых, в точке x = 0 . Во-вторых, во всех точках, где обнуляется sin π / x , то есть во всех x = 1 / k , k ∈ Z .

Непрерывность функции: определение, точки разрыва, примеры

Непрерывные функции образуют основной класс функций, с которыми оперирует математический анализ. Представление о непрерывной функции можно получить, если сказать, что график ее непрерывен, т.е. его можно начертить, не отрывая карандаша от бумаги.

Непрерывная функция математически выражает одно свойство, с которым нам приходится часто встречаться на практике, заключающееся в том, что малому приращению независимой переменной соответствует малое же приращение зависимой от нее переменной (функции). Прекрасными примерами непрерывной функции могут служить различные законы движения тел , выражающие зависимости пути , пройденного телом, от времени . Время и пространство непрерывны, при этом тот или иной закон движения тела устанавливает между ними определенную непрерывную связь, характеризующуюся тем, что малому приращению времени соответствует малое же приращение пути.

К абстракции непрерывности человек пришел, наблюдая окружающие его, так называемые сплошные среды — твердые, жидкие или газообразные, например металлы, воду, воздух. На самом деле, как теперь хорошо известно, всякая физическая среда представляет собой скопление большого числа отделенных друг от друга движущихся частиц. Однако эти частицы и расстояния между ними настолько малы по сравнению с объемами сред, с которыми приходится иметь дело в макроскопических физических явлениях, что многие такие явления можно достаточно хорошо изучать, если считать приближенно массу изучаемой среды без всяких просветов, непрерывно распределенной в занятом ею пространстве. На таком допущении базируются многие физические дисциплины, например гидродинамика, аэродинамика, теория упругости. Математическое понятие непрерывности играет, естественно, в этих дисциплинах, как и во многих других, большую роль.

Рассмотрим какую-либо функцию и вполне определенное значение независимой переменной . Если наша функция отражает некоторый непрерывный процесс, то значениям , мало отличающимся от должны соответствовать значения функции мало отличающиеся от значения в точке . Таким образом, если приращение независимой переменной мало, то должно быть малым также и соответствующее приращение функции. Иными словами, если приращение независимой переменной стремится к нулю, то приращение функции должно, в свою очередь, стремиться к нулю, что может быть записано следующим образом:

Это соотношение и является математическим определением непрерывности функции в точке .

Функция называется непрерывной в точке , если выполняется равенство (1).

Дадим еще такое определение:

Функция называется непрерывной для всех значений, принадлежащих к данному отрезку, если она непрерывна в каждой точке этого отрезка, т.е. в каждой такой точке выполняется равенство (1).

Таким образом, для того чтобы ввести математическое определение свойства функции, заключающегося в том, что график ее есть непрерывная (в обычном понимании этого термина) кривая, появилась необходимость определить сначала локальное, местное свойство непрерывности (непрерывность в точке ), а затем на этой основе определить непрерывность функции на целом отрезке.

Приведенное определение, впервые указанное в начале прошлого столетия Коши, является общепринятым в современном математическом анализе. Проверка на многочисленных конкретных примерах показала, что это определение хорошо соответствует сложившемуся у нас практическому представлению о непрерывной функции, например представлению о непрерывном графике.

В качестве примеров непрерывных функций могут служить известные из школьной математики элементарные функции . Все перечисленные функции непрерывны на отрезках изменения , где они определены.

Если непрерывные функции складывать, вычитать, умножать и делить (при знаменателе, не равном нулю), то в результате мы снова придем к непрерывной функции. Однако при делении непрерывность, как правило, нарушается для тех значений , при которых функция, стоящая в знаменателе, обращается в нуль. Результат деления представляет собой тогда разрывную в точке функцию.

Функция может служить примером разрывной в точке функции. Ряд других примеров разрывных функций дают графики, изображенные на рис. 1.

Рекомендуем внимательно рассмотреть эти графики. Отметим, что разрывы функций бывают разные: иногда с приближением к точке , где функция претерпевает разрыв, предел существует, но отличен от , а иногда, как на рис. 1в, этого предела просто не существует. Бывает и так, что с приближением к с одной стороны , а если , приближаясь с другой стороны, то уже не стремится к нулю. В этом случае, конечно, мы имеем разрыв функции, хотя про нее можно сказать, что она в этой точке «непрерывна с одной стороны». Все эти случаи можно проследить на приведенных графиках.

Определение непрерывности функции

1. Функция непрерывна в точке , если пределы слева и справа равны и равны значению функции в этой точке, т.е.

2. Функция непрерывна в точке , если она определена в этой точке и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т.е. вблизи точки .

Сумма, разность и произведение конечного числа непрерывных функций есть функция непрерывная.

Непрерывная на отрезке функция принимает любое промежуточное значение между ее наименьшим и наибольшим значением, то есть для всех . Отсюда следует, что если в граничных точках отрезка функция имеет разные знаки, то внутри отрезка есть по крайней мере одно такое значение , при котором функция обращается в ноль. Это свойство непрерывности функций позволяет находить приближенно корни многочленов.

Точки разрыва функции

Значения аргумента, которые не удовлетворяют условиям непрерывности, называются точками разрыва функции . При этом различают два рода точек разрыва функции.

Если при слева функция имеет конечный предел , а при справа функция имеет конечный предел и , то говорят, что функция при имеет разрыв первого рода . Разность определяет скачок функции в точке . Значение функции при при этом может быть равно какому угодно числу .

Если значение функции при равно , то говорят, что функция непрерывна слева; если же , то говорят, что функция непрерывна справа.

Если говорят, что функция имеет в точке устранимый разрыв .

Если при справа или слева, предел функции не существует или равен бесконечности, то есть , то говорят, что при функция имеет разрыв второго рода .

Пример 1. Найти множество значений , при которых функция непрерывна.

Решение. Найдем приращение функции

При любых значениях переменной приращение , если только поэтому функция непрерывна при всех действительных значениях переменной .

Пример 2. Доказать непрерывность функции в точке .

Решение. Для доказательства найдем приращение функции при переходе значения аргумента от к

Найдем предел приращения функции при

Так как предел приращения функции при равен нулю, то функция при непрерывна.

Пример 3. Определить характер разрыва функций и построить графики:

y=operatornamefrac<1>.» png;base64,iVBORw0KGgoAAAANSUhEUgAAA9QAAAAyBAMAAABPD461AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAf8WZF0JB6TFisVEBO639aQAADj9JREFUeNrsW/tvE1cWPmOPjR3fSnZIt90ulhwnwuERyTEsKaWWhhCSAo2UFkL7A5Esyka70kYqDgslTSQH2qWgRjIBlW2FpQT6gt1IpqBF266lqeM2oXWk+kFICv5f9j7GxjO+YzshYSnkSnGC79w5957vPL5zZgBYHavj6R1joVUdPBuj7f1VHZQftvBTcQyUCErPFG5/WPSKC832p+PohvlnCWihNbXoNZ9GnhKoe8eZd8s8l8c/nzVpvjSy1J6Uf5NQ/ye1BBU9JVA76TnE1nSUMxcGY1Nam9uZzobrf5PHNT3JUH+AXlt5qOOH2kp1gPxe6A1MaL78I/01kcSTq1Av6zhVu9YXXnGoL0XFXCk9242ntXFadJFPy1GYnl+FelmH2CikRl0rDrXThZq7udNaqKfoZaacbEytQr28PCIqZNsCKw71uShgqEfqdtYVTVkcAZO/Dzu76JDOS6pULbbAKtTLXw0NPQZahsG7J1m/9G1qKJoyT9qF5haM8akbg2vJLlAymfwimVymKg2FV6FWj1nvY4FaWIC9EPvkV5VoOzgDGNlGlJ4mULe53Z6geyObjDzKvvbA/6kJ9STn6kB/2CytJNRKiu4Pwz/A315XAjUO5HZzSgiw2tuQz+jiwCMIvRAkBfpqAFeH76w/YHgMUIsnyadbE1AY1Njls/mv9hfK60cKNrX4Z9eTAHVj5SVn/fWc+JNckvimMnNrvvbc2q7KcPISsuJefWNhWEJb1CSBmNGBWuELpr6+DX19f6Z/X0O7y4m0eCtC/QkkLu5hG2vT25+p7G1+v2hNWD5Lqxe9WdmNzjsc69TfHAHY6dHZmah34g20dC4jznL1tVcKVRBBw3eUf2FHqMxu73greLXYBMbuEdsC/Lt4rwrU4ouz4yIJYjsdL9U7HA4yZQyDQ/dYgjsMaytC7YXTZ7azOnIT4moN66XsbdpCi4Xaqmy/ML5fQnASMKFxzz7gzv18RccVz9FwIlRbNzvHwfCvHF/80Svl7LO+AtSGCYdHGj49JzaC06uFWkjF7FMsV8cVIcjneOk4TEZ17NNvB0O0AtQJLwqvuUFDozDOuyYxhs0rXu425mPVaK1ss1HMLh5qWwYsCzbuxoTBtA7UZpY5/laljJgXRgPfcaduS8bNZVa+JZUP4JFcLgdX1zaMhcBfKO6szcH4sFsG68n6TUp7dL/ifhZ8fRYm9WwU24h1qALUggRyl0RTXidvd8g9iaEuf5uq+vCHy00mtywh48pguqt3vwpQ+6rNuZgNdvOnBsF0v8zKuC6J9NMbftjT8zbsie67iPdUMJnEwYPmg32EmEhvMDBQnsWIPT09h6CjDNRwsgLURkDtYyDlw3neLf6rYb5lb3O7GuIypgsz+XhhCdwHK2lODyI9qBU+2F89xe7ld87EFKCMnnQsXNfl0bBWtujiMUCksCS5Ku5FoL5eAeoRDONVKzkOKqIfYu1lNdRXywHV1a1/5MIfQR06e873Bf4cJfn+8OcgVJ330d4GuJB5Hv91ul6o50AtvsgzjszYBqzqLhL3z30NtrL5DRJur9Xfgk9n8YVr1W76Q4oIGeGZjOWrBglshERYGwDqtDv4tYTClels/KQWUMNXz82GLrviLmNe2KnZ1P5NHWiXextsBWi5SemwSKKh0HBWYljXqaDGt+ES7V3urUqw2rsezOo9W683SIkrL18Podpg9PA9hwTfNnxb4ocnXifJi1ilZWsKRsnvPjoqOd6eoDySOoAvb+w8GSMqOEiXBfJQG9M8qO8d2oWpxbSdPNfYCF3YS0R9cWLEZXE+j2fOtac/zbLihwyiKAr1JI/eRC6PjoOJHPRmV9g2V9jZEUZiS5jNqXJ1h/qf73AvMh6fIa/o9GMl2LbNgTNU2Cg5lPX4VBqIFTwMEKZ5fLaG9mEWsMSxumKoeyVLjmNR4oDoxmwSRyDU1CqT34riyLWj4z81ipcGY962xpr53ekeSXhvav6f2ltckWfHGdQ17Sm6TcLP8ajo327ZfBeHOYM07fKQM7FldXmoLRv4uVrEbhXHEBsPZCCGvfpnto4bmWZd0N8t44yJ0muO0eKHDgXqnPwNJ7onBlGnlzoOaoyFjVn1zkTPouqVI1WRxzD02xmriN+Zg68wpAITSdTSG2YEpagtasUhp+YYTCrmnRzbWgx1NzeG12QhFqB5yWr3IOIjM0wGViE+MC4bDfd3hvyScAylieLMnC7ZD/0u5maCkKXbLGbZW/hjByWMMqVlVuyb7ckqczXZQDMuYbBIq/U++NW+bCmW0c2gprQsakmJ6ksZ1Fz6nyI+hMhJw63YDNWzZ7Yuf0MKQ0agHsU73VczhAbVqjghWyl7LWqLChjqmB37Sv4aBes81FyrX98XsYOA+bm5PQMRdeaTxb+kwPCACCPKxxmSQa3g9zKTsmsgokAN05s12ywLNfFqmg5QJJCExUAdolAD1opHfZm5WEZU8WrWqJzXsAxbSk+IsEB3QE6KBqj5q6CuW3akEbZdBWokd3ktancyZWDqgaarRKCeDD1s1aE3K0Pdf9ThCNCVWBlaH7F5WhjUaWBQG1zWOS3UYlB6bjML4NBlpwTZVhTAyVM83pCpV5tZseVnKtcEcD2oUR7qWS89rCIuoBEnKwGcMfAa1qoRCgHcwjIB36vJuQjgpgVm/sUB/EpopaCmGEUCwjwUB3C8nTUuDSM2YVCGZVu+WESXNAGc69W0pDAOsa5tUCZP1/MBHCKvmhjUOerVKCy4PdGHCi34wHPr7RRq1Mu2aemhQ6qcq2kA37suKNPH92xZd4GBX9SB+gTAGiKuy24jeCTKiFOgTlybdomEgZnYtUTCIJgXYB9nlQVbgJ3Rsrz5/4mu0qNljzz8IQY1MSKnXEPQMFOJB7FwnLy71mmyiHkeOwoYs+eV8F2HVLQM3uYIMWTBEqC0DKbHqY8oiiNSmyVz6neGX2gu+RBDPW54Xa0Z8RbOmCnoxVCPEt8ZjbYNVf8kA2/WTOwysi0NO0paKEkw8spec1oS8KLZMA0ihmzB2lGSDzWKsUbluFFj7C9gAgKTvDrXf9nkBRu5tXXOEtSGF1OmwrlmFu32mAX6X1VeVXJKZ9RVgXhfbP5O088hnNEHZ95t1BRbMS81FgvnrTcQM7JBonwWRwnjfXWYmJRqUtviv8jQ2YgaIWiz10w4bqlIHQl1/i070iG2zamjzePVH7A3N9ecm8Psz/eW9rU/IZfLddt4xZapaaK1m1ouoO8HPCV9jjt5Owor95nN5QKQGFg/oOXzUxta8bZ53Ssh/YrEIp3o9mVKw62ix79zrBeXxJYBvi2IN/6q+4TGXevHkZO2ANsaNP81Inmp9pS2W4/q8YVXt2e8FOlC9GvO5R6QTow4zCkskmcGNikNCeuAR93IRm0D11q/xKvRjAdjcXujhDV3rxgUgdrGAeK/rDHa0RuupkfGNoKSMo07yRD6uGRfJD/EuS0fyqR91CA7ukq6l3HFUtFm5T60IkUz8KPWO5Mj2GwRt1E5g0UYyK2ReHZOpzFqusB7ZI+jRGddmnvqU2tP6Lq7KHXg89IWmPyRU40rSkqlJRtpjLazxxLGy8VqY41Rgdsh/EgmnX9yyx87NedOdgCigRElsEGKIbj9cfL0kLqLna9F77KmpaeK/ugb1f6Pnnd023voJK1/oVWqAHXFRy52vS4hfdwRC0+7dB53xFt4UH8TxRH4Ay6ax2BUN8vTUGoj08JcycsqiKPTTon7Na25332oBf7jDly3RLoryMC2ZOI/whJIKBHeF96rgm86nFVCrf++g9VF6bG1VNwioY7rckf6YKo15JN0oNZ9Eccpc0Ew/a+ds3lxGogC+Gw67CbbOaR4EinUcQ/L4iH2YossxIoIoqB48KJQFUSE3grWQyErInjw6hceqiyt7KnKXheGGvASD2UXS3H3fzGZpLuaZNJJu5MStq+X0k6+3i9v3pv3XjIA0jDyXCRnRlyu/+Bo83D1zd7NHaarqFOvLT8fd4DaJ3SlEHYdiPYKQHyOqwpR40NtMoehawbrcDFRv468mdALHLKK9hqOQlFbAOUt94svTJQHZCG6S+uU67bPcumwzdSNsxvm2r/iuGpSxLfGOtkO60Q2vQk9JAw2A6E4Z5MZYjuDVc+LWdOiZorb0OOtzrmtWmmqvSa278OFTgn7DO8lWB5GPYQP3YjWIjHOL4yRFrVZeZxmj7Q/GmTaHz7J4NKaNhHqicRGLZ+GOX1K1FHKiLLqHRXl7zk5Fzi4vu9E5IcpG8fB1kFEmBKzy46AZCSDv65pfEPLcNDbTxT1x6f4uzatVYPJUI96ywpwlwZ0V2mSwsto2Iu7DR2kTMoowI/lcFty/2eiVm22lGGtJRK1Oh61nv0TmBiUBkifmC2zL/FZtQncsgwoYkd08agVI7N3WZ8tanveC65U7hoofagtr6zGJW5ZxsubE9GoJeKV32eLmiwVgOFkoegNTh/kkVfAtxSa9YgfhzgF32qivpq2piSDOpCB8VBn+zc1+p9XZaPZshtWGTxKna82bH5drpFK/42qqMmhlois7nSVqnDU8oPdx+CXLyli1tqL62/ttVbjouZbDsHmwcFvkLpX/4TxY6V1Gh3t4f8X/Srfrgq06qW99WqFCEedsSdmkvG1PyoY9+yfAcTv8aYvhWKPX3GaBNMlIfyYYdnW9pavRedCLndeoFVLn4uXVhOYwKncZgQzCCB/DEYjlcW0WTX8sl3kbLFKOujsEXgGftBFor7/j2WW4hpJF8zlGCNwKuJQ945efiAXYm5bmRM61giczibiUMNnh74rGzegfjInlCKrRtb8dbInxaot6111rujZy6jghsTlKhA5mar9CzI9Q0fFFhU/AAAAAElFTkSuQmCC» style=»vertical-align: middle;» />

a) При функция не определена, найдём односторонние пределы в этой точки:

Следовательно, в точке функция имеет разрыв второго рода.

b) При предел функции равен . При 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADAAAAAQCAMAAABncAyDAAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMAMRDQiiHowAFBoWFRoLFx3eb7ogAAAMZJREFUKM+1UksSwyAIVUHAX+T+p602mTYkdqZd1AUL5fk+4NzfjiQvv/QXwkz++/6kyblOYfXmMd4vNxglaF//xu0KEeJZdVYXkDFUbhaSDCDqDtDhO3ASgOypGJbMyVh4A3A8bBpQq1URM1exAEcTUHaF4R5ZzFQXDE+FuDIfET4AiqZFe+PykiQHYIbb8rAgTsAM3lvTjvc5DCVeORANFjSxbhfOqn6ux5wPICRojOf2fJ81Uscj+bmEUc5q4jKCXucmPQAaYQaRCPmIUQAAAABJRU5ErkJggg==» /> предел равен . Следовательно, в точке функция имеет разрыв первого рода и скачок функции равен .

c) Функция определена на всей числовой оси, неэлементарная, так как в точке аналитическое выражение функции меняется. Исследуем непрерывность функции в точке :

Очевидно, что в точке функция имеет устранимый разрыв.

d) Найдём левый и правый пределы функции в точке :

Итак, в точке справа функция имеет разрыв второго рода, а слева – непрерывность.

e) Найдём односторонние пределы функции в точке :

Итак, в точке с обеих сторон у функции скачки.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: