Что такое прямая зависимость

Прямая и обратная пропорциональность

О чем эта статья:

Основные определения

Математическая зависимость — это соответствие между элементами двух множеств, при котором каждому элементу одного множества ставится в соответствие элемент из другого множества.

  • Прямая зависимость. Чем больше одна величина, тем больше вторая. Чем меньше одна величина, тем меньше вторая величина.
  • Обратная зависимость. Чем больше одна величина, тем меньше вторая. Чем меньше одна величина, тем больше вторая.

Зависимости также можно классифицировать по формам: функциональная и статистическая.

Функциональная зависимость между двумя переменными величинами характеризуется тем, что каждому значению одной из них соответствует вполне определенное и единственное значение другой.

В математике функциональной зависимостью переменной Y от переменной Х называют зависимость вида y = f(x), где каждому допустимому значению X ставится в соответствие по определенному правилу единственно возможное значение Y.

Статистическая зависимость — это зависимость случайных величин, когда изменение одной переменной приводит к изменению другой.

Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной. Сами случайные величины, связанные корреляционной зависимостью, оказываются коррелированными.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин. Пропорциональными называются две взаимно-зависимые величины, если отношение их значений остается неизменным.

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз. Проще говоря — это зависимость одного числа от другого.

Есть две разновидности пропорциональностей:

  • Прямая пропорциональность. Это зависимость, при которой увеличение одного числа ведет к увеличению другого во столько же раз. А уменьшение одно числа ведет к уменьшению другого во столько же раз.
  • Обратная пропорциональность. Это зависимость, при которой уменьшение одного числа ведет к увеличению другого во столько же раз. А увеличение числа наоборот ведет к уменьшению другого во столько же раз.

Коэффициент пропорциональности — это неизменное отношение пропорциональных величин. Он показывает, сколько единиц одной величины приходится на единицу другой. Коэффициент пропорциональности обозначается латинской буквой k.

Прямо пропорциональные величины

Две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая увеличивается (или уменьшается) во столько же раз.

Прямая пропорциональность в виде схемы: «больше — больше» или «меньше — меньше».

Свойство прямо пропорциональной зависимости:

Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.

Примеры прямо пропорциональной зависимости:

  • при постоянной скорости пройденный маршрут прямо-пропорционально зависит от времени;
  • периметр квадрата и его сторона — прямо-пропорциональные величины;
  • стоимость конфет, купленных по одной цене, прямо-пропорционально зависит от их количества.

Если говорить метафорами, то прямую пропорциональную зависимость можно отличить от обратной по пословице: «Чем дальше в лес, тем больше дров». Что значит, чем дольше ты идешь по лесу, тем больше дров можно собрать.

Формула прямой пропорциональности

y = kx,

где y и x — переменные величины, k — постоянная величина, которую называют коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Графиком прямо пропорциональной зависимости величин является прямая линия.

Например, при k = 2 график выглядит так:

Пример 1.

В одно и то же путешествие поехали два автомобиля. Один двигался со скоростью 70 км/ч и за 2 часа проделал тот же путь, что другой за 7 часов. Найти скорость второго автомобиля.

  1. Вспомним формулу для определения пути через скорость и время: S = V * t.
  2. Так как оба автомобиля проделали одинаковый путь, можно составить пропорцию из двух выражений: 70 * 2 = V * 7
  3. Найдем скорость второго автомобиля: V = 70 * 2/7 = 20

Пример 2.

Блогер за 8 дней может написать 14 постов. Сколько помощников ему понадобится, чтобы написать 420 постов за 12 дней?

Количество человек (блогер и помощники) увеличивается с увеличением объема работы, если ее нужно сделать за то же количество времени.

Если разделить 420 на 14, узнаем, что объем увеличивается в 30 раз.

Но так как по условию задачи на работу дается больше времени, то количество помощников увеличивается не в 30 раз. Таким образом:

  • х = 1 (блогер) * 30 (раз) : 12/8 (дней).
  • х = 1 * 30 : 12/8
  • х = 20

Ответ: 20 человек напишут 420 постов за 12 дней.

Обратно пропорциональные величины

Две величины называют обратно пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая уменьшается (или увеличивается) во столько же раз.

Объясним, что значит обратно пропорционально в виде схемы: «больше — меньше» или «меньше — больше».

Свойство обратной пропорциональности величин:

Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Примеры обратно пропорциональной зависимости:

Формула обратной пропорциональности

где y и x — это переменные величины,

k — постоянная величина, которую называют коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

Графиком обратно пропорциональной зависимости величин является гипербола.

Свойства функции обратной пропорциональности:

  1. Область определения — множество всех действительных чисел, кроме x = 0.

Область значений — все действительные числа, кроме y = 0.

  • Не имеет наибольших и наименьших значений.
  • Является нечетной, и ее график симметричен относительно начала координат.
  • Непериодическая.
  • Ее график не пересекает оси координат.
  • Не имеет нулей.
  • Если k > 0 (аргумент возрастает), функция пропорционально убывает на каждом из своих промежутков. Если k 0) отрицательные значения функции находятся в промежутке (-∞; 0), а положительные — (0; +∞). При убывании аргумента (k

    Потренируемся

    Пример 1. 24 человека за 5 дней раскрутили канальчик в ютубе. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?

    1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.
    2. Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.
    3. Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:

    1. Пусть за х дней могут раскрутить канал 30 человек. Составляем пропорцию: 30 : 24 = 5 : х
    2. Чтобы найти неизвестный член пропорции, нужно произведение средних членов разделить на известный крайний член: х = 24 * 5 : 30; х = 4
    3. Значит, 30 человек раскрутят канал за 4 дня.

    Пример 2. Автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?

    Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.

      Составим пропорцию: v1/v2 = t2/t1.

    Соотношения равны, но перевернуты относительно друг друга.

  • Подставим известные значения: 75/52 = t2/13
  • Ответ: 18 часов 45 минут.

    Увлекательные задачи по математике для детей 7–13 лет

    Урок 23 Бесплатно Прямая и обратная пропорциональные зависимости

    На этом уроке мы рассмотрим, что такое прямая и обратная пропорциональные зависимости, научимся оформлять и решать задачи с помощью пропорции, устанавливая пропорциональную зависимость между величинами в ней, рассмотрим примеры задач на прямую и обратную пропорциональную зависимость.

    Читайте также  Что такое озоновая дыра

    Прямая и обратная пропорциональность

    Давайте сначала разберемся, что такое пропорциональность.

    Пропорциональность — это зависимость двух величин друг от друга таким образом, что значение отношения этих величин остается постоянным.

    Зависимость величин друг от друга может быть прямой и обратной.

    Отношение между величинами описываются прямой или обратной пропорциональностью.

    Прямая пропорциональность выражается так: (mathbf)

    Обратная пропорциональность выражается так: (mathbf>)

    где k — это число, которое называют коэффициентом пропорциональности.

    x и y величины, зависящие друг от друга.

    Пример

    Площадь прямоугольника равна (mathbf), где S— это площадь прямоугольника, а — длина прямоугольника, b — ширина прямоугольника.

    Если один из множителей произведения — постоянная величина, то произведение прямо пропорционально второму множителю.

    Если постоянно значение произведения, то множители зависят друг от друга обратно пропорционально.

    По формуле видно, что площадь квадрата зависит от длины (ширины) его стороны, а длина стороны (ширина) зависит от его площади.

    Какова эта зависимость, сейчас и рассмотрим.

    Зависимость площади прямоугольника от длины при постоянном значении ширины является прямо пропорциональной зависимостью этих величин.

    Зависимость площади прямоугольника от ширины при постоянном значении длины является прямо пропорциональной зависимостью этих величин.

    Пусть одна клетка равна 1 см. Рассмотрим рисунок:

    Ширина прямоугольника b постоянная величина

    b = 4 см

    a1 = 6 см

    Увеличим ширину прямоугольника — сторону a1 на 1 см, получим

    a2 = 7 см

    Найдем площади прямоугольников S1 и S2

    (mathbf = a_ <1>cdot b = 6 cdot 4 = 24>) см 2

    (mathbf = a_ <2>cdot b = 7 cdot 4 = 28>) см 2

    Вывод: при увеличении стороны прямоугольника увеличилась площадь прямоугольника.

    Рассмотрим другой вариант зависимости

    Зависимость одной из сторон прямоугольника от второй стороны при постоянном значении площади прямоугольника является обратно пропорциональной зависимостью. Пусть одна клетка равна 1 см

    Площадь прямоугольника S постоянная величина

    S = 24 см 2

    b1 = 4 см

    Увеличим высоту прямоугольника- сторону прямоугольника b1 на 2 см, получим

    b2 = 6 см

    Найдем ширину прямоугольника- сторону a2

    Вывод: при увеличении одной стороны прямоугольника и постоянном значении площади, вторая сторона уменьшается.

    Таким образом, мы подошли к основным понятиям пропорциональной зависимости. Чтобы было легко разобраться в несложных схемах ниже, мы дадим пояснение символам:

    1) Две величины прямо пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, так же увеличивается (уменьшается) в n количество раз.

    2) Две величины обратно пропорциональны друг другу, если при увеличении (уменьшении) одной величины в n количество раз, другая величина, зависящая от первой, уменьшается (увеличивается) в n количество раз.

    Примеров прямой и обратной пропорциональности множество.

    Однако не все величины зависят друг от друга прямо пропорционально или обратно пропорционально, встречаются и более простые и более сложные зависимости величин.

    Надо понимать, что даже если какие-нибудь две величины возрастают или убывают, то между ними не обязательно существует пропорциональная зависимость.

    Например, с течением времени увеличивается возраст человека и его размер ноги, но эти величины не являются пропорциональными, так как при удвоении возраста размер ноги человека не удваивается

    Пройти тест и получить оценку можно после входа или регистрации

    Алгоритм решение задач с прямой и обратной пропорциональной зависимостью

    Алгоритм решения задач на пропорциональную зависимость состоит из нескольких основных пунктов:

    1. Обозначить буквой значение неизвестной величины (чаще всего для этого выбирают латинскую букву Х)
    2. Проанализировать задачу и кратко записать ее условия (краткую запись можно делать в виде таблицы или изображать в виде логической схемы)
    3. Установить зависимость между величинами
    4. В краткой записи задачи обозначить стрелками пропорциональную зависимость

    — Стрелки, которые направлены в одну сторону, обозначают прямую пропорциональную зависимость величин

    — Стрелки, которые направлены в разные стороны, обозначают обратную пропорциональную зависимость величин.

    5. Записать пропорцию, учитывая характер пропорциональности величин

    6. Составить уравнение

    7. Найти неизвестный член уравнения (искомую величину)

    8. Записать ответ задачи

    Важно помнить, что при составлении краткой записи задачи величины с одинаковыми единицами измерения записывают друг под другом.

    Если между величинами прямая пропорциональная зависимость, то пропорция составляется точно в соответствии с краткой записью задачи.

    Если между величинами обратная пропорциональная зависимость, то при составлении пропорции одноименные величины меняются местами в одном любом из столбцов таблицы (логической схемы) краткой записи задачи.

    Другими словами, при прямо пропорциональной зависимости отношение значений одной величины равно отношению соответствующих значений другой величины.

    При обратно пропорциональной зависимости отношение значений одной величины будет равно обратному отношению соответствующих значений другой величины.

    Пройти тест и получить оценку можно после входа или регистрации

    Математика. 6 класс

    Конспект урока

    Прямая и обратная пропорциональность. Решение задач

    Перечень рассматриваемых вопросов:

    • Понятия прямой и обратной пропорциональной зависимости.
    • Краткая запись условия задачи.
    • Составление и решение пропорций по условию задачи.
    • Решение задач на прямую и обратную пропорциональную зависимость.

    Равенство двух отношений называют пропорцией.

    Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

    Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

    Основная литература

    1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.

    Дополнительная литература

    1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
    2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.

    Теоретический материал для самостоятельного изучения

    Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

    Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

    Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.

    Столбцы таблицы соответствуют наименованиям зависимых величин.

    Строки таблицы соответствуют значениям величин при первом и втором измерении.

    Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.

    Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?

    При постоянном пути скорость и время движения обратно пропорциональны.

    Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.

    Сделаем краткую запись условия.

    Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?

    При постоянной скорости путь прямо пропорционален времени движения.

    Пусть х м проедет велогонщик за 45 с.

    Сделаем краткую запись условия.

    Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?

    Читайте также  Что такое доношенная беременность

    Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?

    Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.

    Разбор заданий тренировочного модуля

    № 1. Подстановка элементов в пропуски в тексте.

    Подставьте нужные элементы в пропуски.

    Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?

    При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.

    Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.

    При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.

    Пусть х часов – пешеход идёт со скоростью 6 км/ч.

    № 2. Подстановка элементов в пропуски в таблице.

    Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.

    При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.

    Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.

    Прямая и обратная пропорциональность

    Пропорциональность — это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

    Пропорциональность величин может быть прямой и обратной.

    Прямая пропорциональность

    Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным. Такие величины называются прямо пропорциональными или просто пропорциональными.

    Рассмотрим пример прямой пропорциональности на формуле пути:

    s = vt,

    где s — это путь, v — скорость, а t — время.

    При равномерном движении путь пропорционален времени движения. Если взять скорость v равной 5 км/ч, то пройденный путь s будет зависеть только от времени движения t:

    Скорость v = 5 км/ч
    Время t (ч) 1 2 4 8 16
    Путь s (км) 5 10 20 40 80

    Из примера видно, что во сколько раз увеличивается время движения t, во столько же раз увеличивается пройденное расстояние s. В примере мы увеличивали время каждый раз в 2 раза, так как скорость не менялась, то и расстояние увеличивалось тоже в два раза.

    В данном случае скорость (v = 5 км/ч) является коэффициентом прямой пропорциональности, то есть отношением пути ко времени, которое остаётся неизменным:

    s = v,
    t
    5 = 10 = 20 = 40 = 80 = 5.
    1 2 4 8 16

    Если время движения остаётся неизменным, то при равномерном движении расстояние будет пропорционально скорости:

    Время t = 2 ч
    Скорость v (км/ч) 5 15 45 90
    Расстояние s (км) 10 30 90 180

    В этом примере коэффициентом прямой пропорциональности, то есть, отношением пути к скорости, которое остаётся неизменным, является время (t = 2 ч):

    s = t,
    v
    10 = 30 = 90 = 180 = 2.
    5 15 45 90

    Из данных примеров следует, что две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз другая увеличивается (или уменьшается) во столько же раз.

    Формула прямой пропорциональности

    Формула прямой пропорциональности:

    y = kx,

    где y и x — это переменные величины, а k — это постоянная величина, называемая коэффициентом прямой пропорциональности.

    Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x равное одному и тому же числу.

    Формула коэффициента прямой пропорциональности:

    y = k.
    x

    Обратная пропорциональность

    Обратная пропорциональность — это зависимость двух величин, при которой увеличение одной величины приводит к пропорциональному уменьшению другой. Такие величины называются обратно пропорциональными.

    Рассмотрим пример обратной пропорциональности на формуле пути:

    s = vt,

    где s — это путь, v — скорость, а t — время.

    При прохождении одного и того же пути с разной скоростью движения время будет обратно пропорционально скорости. Если взять путь s равным 120 км, то потраченное на преодоление этого пути время t будет зависеть только от скорости движения v:

    Путь s = 120 км
    Скорость v (км/ч) 10 20 40 80
    Время t (ч) 12 6 3 1,5

    Из примера видно, что во сколько раз увеличивается скорость движения v, во столько же раз уменьшается время t. В примере мы увеличивали скорость движения каждый раз в 2 раза, а так как расстояние, которое нужно преодолеть, не менялось, то количество времени на преодоление данного расстояния сокращалось тоже в два раза.

    В данном случае путь (s = 120 км) является коэффициентом обратной пропорциональности, то есть произведением скорости на время:

    s = vt,

    10 · 12 = 20 · 6 = 40 · 3 = 80 · 1,5 = 120.

    Из данного примера следует, что две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

    Формула обратной пропорциональности

    Формула обратной пропорциональности:

    y = k ,
    x

    где y и x — это переменные величины, а k — это постоянная величина, называемая коэффициентом обратной пропорциональности.

    Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

    Формула коэффициента обратной пропорциональности:

    Прямая и обратная пропорциональность

    Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.

    Пропорциональность бывает прямой и обратной. В данном уроке мы рассмотрим каждую из них.

    Прямая пропорциональность

    Предположим, что автомобиль двигается со скоростью 50 км/ч. Мы помним, что скорость это расстояние, пройденное за единицу времени (1 час, 1 минуту или 1 секунду). В нашем примере автомобиль двигается со скоростью 50 км/ч, то есть за один час он будет проезжать расстояние, равное пятидесяти километрам.

    Изобразим на рисунке расстояние, пройденное автомобилем за 1 час

    Пусть автомобиль проехал еще один час с той же скоростью, равной пятидесяти километрам в час. Тогда получится, что автомобиль проедет 100 км

    Как видно из примера, увеличение времени в два раза привело к увеличению пройденного расстояния во столько же раз, то есть в два раза.

    Такие величины, как время и расстояние называют прямо пропорциональными. А взаимосвязь между такими величинами называют прямой пропорциональностью.

    Прямой пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой увеличение другой во столько же раз.

    и наоборот, если одна величина уменьшается в определенное число раз, то другая уменьшается во столько же раз.

    Предположим, что изначально планировалось проехать на автомобиле 100 км за 2 часа, но проехав 50 км, водитель решил отдохнуть. Тогда получится, что уменьшив расстояние в два раза, время уменьшится во столько же раз. Другими словами, уменьшение пройденного расстояния приведет к уменьшению времени во столько же раз.

    Интересная особенность прямо пропорциональных величин заключается в том, что их отношение всегда постоянно. То есть при изменении значений прямо пропорциональных величин, их отношение остается неизменным.

    В рассмотренном примере расстояние сначала было равно 50 км, а время одному часу. Отношение расстояния ко времени есть число 50.

    Читайте также  Что такое краеуголный камень

    Но мы увеличили время движения в 2 раза, сделав его равным двум часам. В результате пройденное расстояние увеличилось во столько же раза, то есть стало равно 100 км. Отношение ста километров к двум часам опять же есть число 50

    Число 50 называют коэффициентом прямой пропорциональности. Он показывает сколько расстояния приходится на час движения. В данном случае коэффициент играет роль скорости движения, поскольку скорость это отношение пройденного расстояния ко времени.

    Из прямо пропорциональных величин можно составлять пропорции. К примеру, отношения и составляют пропорцию:

    Это отношение можно прочитать следующим образом:

    Пятьдесят километров так относятся к одному часу, как сто километров относятся к двум часам.

    Пример 2. Стоимость и количество купленного товара являются прямо пропорциональными величинами. Если 1 кг конфет стоит 30 рублей, то 2 кг этих же конфет обойдутся в 60 рублей, 3 кг в 90 рублей. С увеличением стоимости купленного товара, его количество увеличивается во столько же раз.

    Поскольку стоимость товара и его количество являются прямо пропорциональными величинами, то их отношение всегда постоянно.

    Запишем чему равно отношение тридцати рублей к одному килограмму

    Теперь запишем чему равно отношение шестидесяти рублей к двум килограммам. Это отношение опять же будет равно тридцати:

    Здесь коэффициентом прямой пропорциональности является число 30. Этот коэффициент показывает сколько рублей приходится на килограмм конфет. В данном примере коэффициент играет роль цены одного килограмма товара, поскольку цена это отношение стоимости товара на его количество.

    Обратная пропорциональность

    Рассмотрим следующий пример. Расстояние между двумя городами 80 км. Мотоциклист выехал из первого города, и со скоростью 20 км/ч доехал до второго города за 4 часа.

    Если скорость мотоциклиста составила 20 км/ч это значит, что каждый час он проезжал расстояние равное двадцати километрам. Изобразим на рисунке расстояние, пройденное мотоциклистом, и время его движения:

    На обратном пути скорость мотоциклиста была 40 км/ч, и на тот же путь он затратил 2 часа.

    Легко заметить, что при изменении скорости, время движения изменилось во столько же раз. Причем изменилось в обратную сторону — то есть скорость увеличилась, а время наоборот уменьшилось.

    Такие величины, как скорость и время называют обратно пропорциональными. А взаимосвязь между такими величинами называют обратной пропорциональностью.

    Обратной пропорциональностью называют взаимосвязь между двумя величинами, при которой увеличение одной из них влечет за собой уменьшение другой во столько же раз.

    и наоборот, если одна величина уменьшается в определенное число раз, то другая увеличивается во столько же раз.

    К примеру, если на обратном пути скорость мотоциклиста составила бы 10 км/ч, то те же 80 км он преодолел бы за 8 часов:

    Как видно из примера, уменьшение скорости привело к увеличению времени движения во столько же раз.

    Особенность обратно пропорциональных величин заключается в том, что их произведение всегда постоянно. То есть при изменении значений обратно пропорциональных величин, их произведение остается неизменным.

    В рассмотренном примере расстояние между городами было равно 80 км. При изменении скорости и времени движения мотоциклиста, это расстояние всегда оставалось неизменным

    Мотоциклист мог проехать это расстояние со скоростью 20 км/ч за 4 часа, и со скоростью 40 км/ч за 2 часа, и со скоростью 10 км/ч за 8 часов. Во всех случаях произведение скорости и времени было равно 80 км

    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

    Возникло желание поддержать проект?
    Используй кнопку ниже

    10 thoughts on “Прямая и обратная пропорциональность”

    что ценно теория методически верно преподается. очень добрый сайт.

    мне теперь всё понятно, большое спасибо сайту

    Функция. Аргумент. Прямая и обратная зависимость

    Содержание

    Вокруг нас происходит множество событий или процессов, которые можно измерить. При этом величина одних зависит от величины каких-либо других.

    Так, например, от того, сколько мы испишем страниц в тетради, зависит количество оставшихся в стержне чернил. Чем больше кружек наполнено компотом, тем меньше его останется в кастрюле. Чем больше мама оставит денег на обеды, тем больше можно на них купить мороженого. А чем сильнее велосипедист крутит педали, тем больше километров он проедет. Придумайте свои примеры?

    В наших описанных выше примерах первые два имеют обратную зависимость, то есть при увеличении одной величины (количество страниц и кружек в наших случаях), уменьшается вторая (количество чернил и компота в кастрюле).

    Обратная зависимость

    Примеры с велосипедистом и мороженым имеют прямую зависимость, то есть при увеличении одной величины (скорость движения педалями и количество оставленных мамой денег) увеличивается и другая (пройденное расстояние и количество мороженого).

    Прямая пропорциональность

    Зависимость, которая показывает как одна величина связана с другой величиной, как раз и называется функцией.

    Аргумент и функция

    Если одна величина меняется независимо от другой (например, оставленные мамой деньги, исписанные страницы), то она называется независимой или аргументом и обозначается обычно $x$

    Если же величина зависит от другой, то ее называют зависимой переменной или функцией и обычно обозначают как $y$ или $f(x)$. То есть $y=f(x)$.

    Зависимые и независимые переменные могут обозначаться и любыми другими буквами (латинскими или греческими).

    Примеры аргумента и функции

    • Чем старше дерево, тем оно выше. Возраст дерева – аргумент, рост – функция
    • Чем дольше машина едет с одной скоростью, тем большее расстояние она проедет. Время – аргумент, скорость – неизменяемая величина, расстояние – функция
    • Чем меньше цена мороженого, тем больше можно купить за 100 рублей. Цена мороженого – аргумент, количество мороженого – функция, 100 рублей – неизменяемая величина
    • Чем меньше мы вычтем из числа, тем больше результат. Вычитатель – аргумент, результат – функция

    Запись функции

    Посмотрим как можно записать функциональную зависимость купленного мороженого от оставленных денег на обед. Допустим мороженое стоит $20$ рублей. Тогда:

    • если мама оставит $20$ рублей, мы купим только одно мороженое;
    • если $40$ рублей – два мороженых;
    • если $100$ рублей – целых пять мороженых.

    Таким образом, количество порций мороженого обозначим $у$, а количество оставленных денег $x$. Функция будет выглядеть следующим образом:

    Слово «функция» произошло от латинского слова functio – исполнение, осуществление. Это одно из главных понятий в математике, показывающее зависимость одних переменных величин от других. Понятие «величина» в данном случае может включать в себя совершенно любое число.

    Переменные могут принимать как положительные, так и отрицательные значения.

    Важно: во всех случаях, когда употребляется термин «функция», подразумевается однозначная зависимость величин, при которой каждому значению аргумента $х$ соответствует только одно единственное значение зависимой переменной $y$.

    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: