Что такое кибернетика

Что такое кибернетика: что изучает и для чего нужна

  1. Предмет изучения
  2. Системы изучения
  3. История кибернетики
  4. Ученые-кибернетики
  5. Применение
  6. Медицинская кибернетика
  7. Перспективы и будущее

Предмет изучения

Царица цифрового мира – наука кибернетика. Этим термином объединяется множество понятий, в основном связанных с интеллектуальной техникой, роботами и автоматизированными системами. Но, грубо говоря, его восприятие немного искажено. Изначально кибернетика это, в общем смысле, наука об управлении, которая относилась к искусству государственных деятелей в древней Греции.

В наше же время понятие трансформировалось, приобретя новый, более широкий смысл. Теперь этой научной дисциплиной называют систему получения, хранения и преобразования информации для сложных, основанных на математических принципах действия, систем. К которым безусловно относятся и современные компьютерные и автоматические комплексы обработки данных. Но и не только. Фантастическая картинка-иллюстрация кибернетики

В ней анализируются взаимосвязи происходящих процессов в комплексе особей живого мира, включая растительный и микробиологический. Не обходит кибернетика вниманием и социально-экономические структуры. К каким относятся предприятия, группы людей, отрасли промышленности, политические объединения, страны.

Системы изучения

Главное, что изучает кибернетика – логическое взаимодействие отдельных элементов системы для получения конкретного результата. Примером можно привести управленческую структуру производственного предприятия, отдел ПТО. Упрощенная схема взаимодействия ПТО и остальных элементов предприятия

Он – часть общей системы завода, его функциональная единица. У организации есть план выполнения, который разработан в соответствии с ресурсными возможностями и максимальной прибылью. Задача отдела выполнить документационную и проектную работу по подготовке всех этапов производства.

То есть, в рамках кибернетики, в ПТО приходит указание на выпуск такого-то количества продукции определенного вида. Отдел разрабатывает документы – планы и схемы самих изделий, акты на закупку исходных ресурсов, сметы. Результаты деятельности от этого логического элемента предприятия отправляются поставщикам, в производственные цеха, бухгалтерию. Вот пример функциональной системы, изучаемой кибернетикой, причем весьма далекий от технологии как таковой.

В описанном случае не нужно знать об оснащении цехов (токарные станки, пилорама или другого), форме прихода указаний от руководства (почта, электронное сообщение, курьер), или, к примеру, о валюте расчетов – это рассматривается в рамках других наук.

Главное для кибернетики – логическое взаимодействие комплексных частей и влияние отдельного элемента, поступающих ему стимулов и его реакции от них на происходящие процессы в целом.

В общем виде, область рассмотрения этой наукой – взаимодействие частей системы. Каждая из которых довольно сложна и описывается различными дискретными математическими моделями, входящими в дисциплины теории игр, информации и алгоритмов.

Комплексный элемент структуры обрабатывает входной сигнал в зависимости от своего строения, которое моделируется в рамках кибернетики методами теории графов, кодирования, управляющих систем и комбинаторного анализа, преобразует его и выдает собственный результат, для последующего разбора или выполнения другой частью системы.

История кибернетики

Как уж говорилось, научная дисциплина кибернетика была описана еще в древней Греции, приблизительно в 4 веке до нашей эры. Сам термин пошел от греческого [ϰυβερνητιϰή] – искусство управления. От его фонетического звучания и возникло само название в латинском языке, которое впоследствии трансформировалось в «кибернетику». Но до сих пор используется и в более близком смысле по однокоренным словам [лат. gubernare] – управлять, [лат. gubernator], по-русски – губернатор или же в виде названия «губерния». Описана дисциплина впервые была ученым Платоном в своем диалоге «Законы». Бюст Платона Афинского

Окончательное введение в общность изучаемых наук было произведено А. Ампером в 1834 г., который в своей классификации упоминал кибернетику как «практику управления государством».

Современное понимание дисциплины было введено американским ученым Нобертом Винтером в 1947 году и касалось уже общности математических систем управляющих элементов.

Ученые-кибернетики

Управление кибернетическими механизмами регулирования было еще заложено в устройствах Ктесибия, жившего в 2-1 веках до нашей эры, и Герона Александрийского (около 1 в. до н.э.).

В средние века основы дисциплины применялись в изготовлении часовых и навигационных приборов или различных видов мельниц, где требовалось автоматическая регулировка работы устройств.

Основной рассвет систематизации кибернетики возник в век пара, относящий к технологическому периоду использования его в устройствах движения. Первый автоматический регулятор работы паровых двигателей запатентован Джеймсом Уаттом (1736-1819), они же, в свою очередь, дали большой толчок процессу индустриализации общества. Теоретические работы по кибернетическим системам тех лет относят к статье Джеймс Клерк Максвелла (1831-1879), посвященной регуляторам. Фотография Джеймса Клерка Максвелла

Дальнейшее развитие дисциплина получила в трудах И.А. Вышнеградского (1832-1895). Сравнение естественных биологических систем и их реакций изучалось, в рамках кибернетики, И.П. Павловым (1849-1936) и П.К. Анохиным (1898-1974). Окончательное математическое обоснование наука получила в работах А. М. Тьюринга, А. Н. Колмогорова, Э. Л. Поста, В. А. Котельникова, А. Чёрча.

Современное понимание кибернетических систем и информатики было определено в рамках создания первой электронной вычислительной машины, прообраза компьютера, Нобертом Винтером, В. Бушем, Дж. фон Нейманом, У. Мак-Каллок и А. Розенблют. Итог работы этой группы относительно реальных технических и практических задач был опубликован Винтером в его книге «Кибернетика», изданной в 1948 году. Ноберт Винтер

Для сохранения истины, хотелось бы вспомнить о том, что устройства обработки информации существовали еще до трудов Н. Винтера, только они не получали необходимого теоретического обоснования, требуемого в рамках научной дисциплины. В общность таких приборов входят различные арифмометры, механические вычислительные машины Чарльза Бэббриджа и станки Жозефа Мари Жакара, регуляторы множества изобретателей и созданные Конрадом Эрнст Отто Цузе релейные компьютеры.

Применение

Как научная дисциплина ее тезисы, математические решения и методы исследования применяются в изготовлении всей окружающей автоматики, включая такие ее виды: распознающие образы на изображениях, нейросистемы искусственного интеллекта, различные контролирующие устройства или их части, медицинское оборудование, вся цифровая техника, роботов, комплексы восприятия и синтеза голоса.

В сущности, в 21 веке сложно найти что-то в окружении человека, которое не содержит тех или иных управляющих элементов в зависимости от поступающих сигналов. Кибернетика – основа замены человека во всех областях жизни

Медицинская кибернетика

Одной из ниш, которую плотно заняла научная дисциплина кибернетика, стала медицина. Средства контроля и автоматизации используются в миллионах относящихся к этой сфере деятельности приборов и устройств. Сюда входят системы предварительной поддержки жизнедеятельности организма человека – аппараты искусственного дыхания, фибрилляции, контролирующие его состояние приборы (различные анализаторы и индикаторы), а также вживляемые и устанавливаемые протезы.

Все эти ниши важны, но хотелось бы отдельно упомянуть о последних из перечисленных. Наиболее видимо и полно соответствуют понятию кибернетики различные современные протезы конечностей человека. Теперь управление ими осуществляется отдачей команд при помощи мыслей, а не устаревшими механическими способами.

Кроме того, созданы, пока экспериментальные, системы обратной связи, которые позволяют чувствовать искусственную руку или ногу как реальное продолжение человеческого тела с восприятием информации от различных датчиков, размещенных на протезе. Швейцарский бионический протез с обратной связью по чувствительности и управлению мозговыми волнами

Перспективы и будущее

Не зря наше время – период царствования науки кибернетика. Все вокруг получает большую автоматизацию для удобства использования человеком. Это касается как бытовых и развлекательных приборов, так и почти всех производственных процессов.

К области интересов дисциплины можно отнести любые современные контролирующие системы, от таймеров в печках или стиральных машинах, до автоматов, управляющих ядерными реакторами или работой светофоров у переходов через дорогу. К дисциплине относятся и все электронные устройства – принцип их действия непосредственно построен на использовании ее теорий и практик.

Компьютерная техника, как в стационарных ее видах ПК и мэйнфреймах, или перемещаемая в виде сотовых телефонов, фитнес-браслетов, игровых приставок, ноутбуков или планшетов, это вообще ниша, полностью и безраздельно занимаемая кибернетикой, математические методы которой используются в аппаратных частях оборудования и программном его заполнении. Некоторые виды компьютерной техники

В перспективах развития, обозначенных этой дисциплиной, можно упомянуть большую роботизацию человеческой деятельности и создание искусственного интеллекта, которые вообще снимут с людей не только физическую, но и возможную умственную активность, выполняя за наш вид все процессы, приносящие пользу, по созданию чего-либо нового или обеспечивающие удовлетворение жизненных потребностей.

Кибернетика. Устройство и применение. Особенности и будущее

Кибернетика – наука, занимающаяся изучением способов управления в различных сложных системах. Ее появление было связано с развитием нейрофизиологии, техники и математики. Эта наука в основу своей деятельности включила изучение живых и не живых систем, в которых присутствовали структуры обратной связи. Всех их объединяла возможность воспринимать, сохранять и обрабатывать определенную информацию. К числу подобных систем можно отнести общество людей, компьютеры, мозг человека, автоматизированные регуляторы и тому подобное.

Основателем данной науки является Винер Норберт, виднейший ученый из США. В своих работах он сформулировал ее главные положения. Они охватывали вычислительную технику, электрические сети, теорию вероятностей, математику и ряд иных трудов. Кибернетический подход начал активно развиваться в 1940-е годы. В основе науки стали использоваться и другие направления: языкознание, медицина, биология, экономика и тому подобное. Благодаря ней эти и многие области знаний получили существенное развитие.

Кибернетика

Поня­тие «кибернетика» включает множество определений, однако они сходятся в одном: она представляет науку, исследующую закономерности построения систем сложного характера и особенностей их управления. В виду того, что практически каждый процесс управления базируется на базе полученных данных, то эту науку связывают с принципами доставки, хранения и переработки информации в указанных системах.

Особенность данной науки в том, что изучается не сам состав систем, а непосредственно итог их деятельности. Изучению подвергаются управляющие системы требуемой степени сложности. Но это не все системы, а только те, которые меняются или находятся в движении, то есть динамические системы.

К подобным системам можно отнести:

  • Живые организмы, к ним можно отнести представителей животного и растительного мира.
  • Технические агрегаты в виде систем агрегатов, транспортных средств, компьютерных систем и тому подобное.
  • Социально-экономические структуры, к которым можно отнести группу людей, компании, определенные отрасли промышленности, страны и так далее.
Читайте также  Что такое монастырь

Но, изучая сложные системы динамического характера, не стоит задача определения всех особенностей их функционирования. Из вида, в частности, упускаются некоторые физические особен­ности построения системы. К примеру, при исследовании крупной электрической станции не стоит задача выяснить размеры генераторов, КПД станции, а также физические процессы образования электрической энер­гии и тому подобное.

В происходящих процессах главным является то, как конкретные устройства агрегата управляют отдельными элементами и выполняют конкретные логические функции. Если же рассматривать социально-экономические структуры, то здесь не важны биохимические или биофизические процессы, которые могут происходить в человеческих организмах.

Всеми вышеуказанными вопросами уже занимаются конкретные науки, среди которых физика, математика, биология, химия, электротехника и меха­ника. Кибернетика же исследует только структуры систем, которые отвечают за процессы управления, то есть сбор данных, их обработка, хранение и использование для последующего управления. В то же время некоторые физико-химические процессы могут входить в сферу интересов нашей науки, но только в том случае, если они напрямую касаются процессов управления.

Устройство
Кибернетика как наука развивается в различных направлениях. Она включает различные кластеры, которые выступают в качестве ее основы:
  • Теоретическая наука. Она разрабатывает научный аппарат и методы изучения систем управления. В нее входят определенные разделы матема­тики, к примеру, теория алгоритмов и так далее. Теоретическая наука интересуется теорией автома­тов, теорией преобразова­ния информации и тому подобное.
  • Техническая наука. Она занимается изучением особенностей управления техническими системами. Этот кластер занимается изучением предмета создания автоматов, включая роботов и электронных вычислительных машин. К тому же техническая наука занимается проблемами сбора данных, их перемещения, переработки, сохранения и тому подобное.
  • Биологическаякибернетика. Она занимается изучением особенностей управления биологических систем. Этот кластер также может быть поделен на ряд разделов:

— Медицинский раздел , куда входит моделирование болезней, диагностирование и лечение.
— Физиологический раздел , куда входит моделирование и изучение функций клеток и органов живых существ в нормальном и патологическом состоянии.
— Нейрокибернетика . Здесь происходит моделирование процессов управления, касающихся нервной системы.
— Психологи­ческий раздел , куда входит моделирование психики на базе поведенческого анализа людей.
— Можно выделить отдельный раздел, который находится на стыке технической и биологической науки. Его называют бионикой, она занимается моделированием биологических процессов и механизмов с целью улучшения уже созданных и проектируемых технических устройств.

  • Социальная наука. Она занимается изучением особенностей управления в социальных системах. Но, следует сказать, что социальная наука не может в полной мере охватить все нюансы управления обществом, которая часто характеризуется явлениями и процессами неформального характера.
  • Экономическая наука. Она занимается изучением особенностей управления народным хозяйством, в том числе ее отдельными элементами, организациями, предприятиями и тому подобное. Одним из главных направлений деятельности данного кластера является изучение автоматизированных систем управления.
Применение

На данный момент кибернетика применяется в самых разнообразных сферах человеческой жизни, начиная от экономической и политической деятельности до генетического программирования. Особое направление уделяется созданию робототехнических систем. Благодаря внедрению в жизнь новейших технологий и производству продвинутых устройств, в числе которых малогабаритные приводы, миниатюрные датчики, новая элементная база, наука может двигаться вперед семимильными шагами.

Благодаря вышеперечисленному робототехника сегодня получила невероятный толчок. Сегодня роботы перестали быть сюжетом фантастических книг и кино, они существуют и развиваются. Появляются не только промышленные роботы, но и высокотехнологичные и умные робототехнические комплексы, которые с успехом применяются и в быту. На текущий момент они активно используются в промышленности, а в скором времени появятся серийные роботы для домашнего использования.

На данный момент это роботы преимущественно первого поколения, в которых заложен только жесткий алгоритм действия по конкретной команде. Тем не менее, их возможностей вполне хватает для осуществления многих целей. Сегодня появляются роботы второго поколения, в которых заложена функция адаптации к происходящим процессам. Подобные кибернетические системы могут приспосабливаться к изменениям, подбирая оптимальные действия. На данный момент большая часть подобных робототехнических систем только разрабатываются и проходят лабораторные испытания. Но самые простые экземпляры уже находятся в опытной эксплуатации.

Роботы третьего поколения будут иметь элементы искусственного интеллекта. То есть они смогут оценивать окружающую обстановку, ее изменение и сами принимать решение о своих последующих действиях, чтобы выполнить конкретно поставленную задачу. При этом робот сможет сам обучаться, накапливать опыт, чтобы использовать его в будущем.

Прогнозы на будущее

Кибернетика сегодня активно связана с информатикой. Во многом именно интернет становится той основой, на которой базируется эта наука. Сегодня интернет проникает в самые разные области жизни, в том числе робототехники. Ученые предполагают, что в скором времени кибернетические системы будут одной из главных составляющих окружающей среды и человека.

Через 5-10 лет активно будут применяться системы виртуальной реальности. Их можно будет встретить повсеместно: это медицина, школьное и университетское образование, строительство, инженерное проектирование и многое другое. К примеру, совершенно поменяются способы диагностики и лечения людей, в том числе методы обучения. Купив квартиру, можно будет надеть шлем виртуальной реальности и создать уникальный дизайн помещений, просто подбирая виртуальные краски, мебель, технику.

Через 10-20 лет наступит время искусственного интеллекта, который будет преобладать в многочисленных областях. Исчезнут многие профессии, в числе которых водители, проектировщики, секретари и многие другие. Автобусы, троллейбусы, грузовики и даже личные автомобили смогут ездить без водителя. Искусственный интеллект сможет самостоятельно ставить диагнозы, назначать лечение, проектировать мосты, здания, решать иные многочисленные задачи.

Через 50 лет. Искусственный интеллект будет повсеместно. Его возможности достигнут таких высот, что практически всем будет заниматься компьютер. Он будет снимать кино, продумывать распорядок дня человека, моментально лечить его, давать ему указания. Искусственный интеллект будет писать книги, сочинять музыку, заниматься научными и исследовательскими работами, строить машины, новых роботов, космические корабли, разрабатывать новые технологии и многое другое.

«Кибернетика» — что это на самом деле? Просто о пределе сложности

Человек, атом, скопление галактик, живая клетка, отряд бойскаутов, мафия, муниципалитет, Вселенная — все это примеры систем.

Которые могут (и должны!) быть предметом изучения кибернетики.

1. Кибернетика — это не про программирование.

И даже — не про компьютеры вообще.

Кибернетика — даже не наука об управлении (как и мы иногда пишем в духе «лжи для детей» Терри Пратчетта).

Кибернетика — подраздел математики, изучающий поведение систем.

А в практическом аспекте — как на системы влиять, дабы стимулировать их переход в «искомое состояние».

Ведь далеко не все системы (и даже подавляющее большинство из встречающихся на практике — не!) поддаются директивному управлению в бытовом понимании термина: руками вождению («ты начальник — я дурак», «иди туда делай сюда»).

2. Что же такое «система» — в строго-кибернетическом смысле?

First of all, — это математическая абстракция.

Говоря практически, система — что угодно, раскладываемое на взаимодействующие компоненты.

Человек, атом, скопление галактик, живая клетка, отряд бойскаутов, мафия, муниципалитет, Вселенная — все это примеры систем.

Которые могут (и должны!) быть предметом изучения кибернетики.

Забегая вперед, кибернетический подход является единственно научным (математика в известной Вселенной — всего одна) для изучения систем любого рода.

Все остальные штудии гуманитарного характера — социология, историософия, психология, политология, пассионарность Гумилева, футурология Курцвейл-стайл, обильное творчество А. Тойнби, гадание по руке, геополитика, etc — более или менее наукообразная маскировка отсутствия математической модели.

Плодить многословные «научные работы» про менталитет, path dependence, историческую судьбу, третий путь, тяжелое наследие татаро-монгольского ига, общественный договор, бремя белого человека и т.д. — достаточно языка и продолжительного финансирования. Ответа на этом пути нет — см. тысячи летбумажных тонн.

И напротив, как только получается построить (подобрать) релевантную математическую модель — автоматически появляется простое решение, убедительно ставящее точку на тысячелетней макулатуре.

3. Существует множество параллельных классификаций систем.

Например, погода — пример хаотической системы.

Система относится к хаотическим, когда нам доподлинно известны законы, согласно которым подчиняется ее эволюция, но (в реальной жизни) предсказать конфигурацию системы на сколь-нибудь отдаленный промежуток времени невозможно.

Минимальные изменения входящих параметров «сейчас» могут драматически изменить состояние системы на интересующий момент («эффект бабочки»).

Другим примером хаотической системы является. бильярд.

Хотя все действующие факторы (закон сохранения импульса, трение, и т.д.) нам прекрасно известны, (в общем случае) мы не можем предсказать финальное расположение шаров после сильного удара.

Казалось бы — что общего между климатом и «американкой»?

Суть. Вот она, магия истинного знания.

Но нас тут больше интересует, скажем так, универсальная мета-классификация систем — по уровню сложности.

4. Сложность — не в бытовом смысле многоэтажных формул, а в смысле английского complexity — комплексностьразвитостьгетерогенность внутренней структуры.

Универсальную шкалу сложности систем предложил Кеннет Боулдинг почти 70 лет назад (General Systems Theory: Skeleton of Science, 1956).

Состоит она из девяти ступеней:

4.1 Статическая структура (молоток из палки и металлического набалдашника)

4.2 Простая динамическая система — от часов до Солнечной системы

4.3 Управляющий механизм. Как правило, на принципе гомеостаза (термостат)

4.4 Открытая самоподдерживающаяся система. Условная грань, разделяющая живую и мертвую материи. Живая клетка.

4.5 Генетически однородная система со специализацией компонент. Уровень растений

4.7 Человек (сознание)

4.8 Социальная организация — коммерческая компания, политическая партия, государство, etc

4.9 Трансцендентальная система — «Вавилон в облаках» (Боулдинг).

О которой мы знаем, что она существует, и что она эволюционирует в соответствии с некоей логикой, но нам недоступны — ни ее полноценный анализ, ни полноценное понимание законов эволюции.

Читайте также  Что такое насвай

Автор: «There are however the ultimates and absolutes and the inescapable unknowables, and they also exhibit systematic structure and relationship.»

5. IEM System относится к уровню социальной организации.

  • первая в истории система, целенаправленно построенная человеком, достигшая восьмого уровня сложности,
  • предел (качественной) сложности, который в принципе может быть достигнут сознательным творением человека.

Ныне представленные на рынке продукты из сферы enterprise software en masse не поднимаются выше третьего уровня сложности — управляющего механизма.

6. Трансцендентальные (относительно возможностей сознания homo) системы им не могут быть построены.

Но: трансцендентальные системы могут возникать эмерджентно — как бы самозарождением (а больше, собственно, и никак иначе).

Муравейник — трансцендентальная система для единичного муравья.

Ни один муравей (полностью) не понимает — ни устройства муравейника, ни законов его функционирования.

Более того, ни один муравей (скорее всего) даже не подозревает о существовании муравейника как целого.

7. Примером трансцендентальной системы для homo sapiens является Солярис — Социальный Компьютер Человечества.

Кибернетической же проекцией экономической ипостаси Соляриса (но не Соляриса в целом!) является мета-структура Интернета Систем.

И попробуйте только сказать, что — «кибернетика это скучно»!

P.S. Оговорка научной точности.

IEM System — это не просто какой-то там волшебный софт.

Теоретический предел сложности компьютерной программы per se — уровень 4

Которого и достигает совокупность программных компонент IEM System; тот же уровень сложности имеет реплицируемый системой «цифровой двойник» (Digital Twin) управляемой организации.

Уровень 4 — теоретический предел сложности любой компьютерной программы.

Но развернутая (эксплуатируемая) IEM System, помимо программных компонент, включает в свой периметр управляемую организацию.

Другими словами, IEM System — мульти-агентная система (и тоже — первая в мире).

«Агентами» же ее (одновременно, параллельно, в реальном времени) выступают — как программируемые «роботы» (условные рефлексы IEM System), так и сотрудники управляемой организации.

И даже — внешние контрагенты, включая собственные автоматизированные ИТ-системы последних.

Создание, возникновение науки кибернетики по Норберту Винеру

Данная статья относится к Категории: Появление новой научной дисциплины

В 1948 году Норберт Винер издал книгу: Кибернетика, или Управление и связь в животном и машине / Cybernetics: Or Control and Communication in the Animal and the Machine, где рассказал о создании новой науки.

«Обычно техническое проектирование считается скорее искусством, чем наукой. Сведя задачу такого рода к разысканию определённого минимума, мы поставили дело проектирования на более научную основу. Нам пришла мысль, что перед нами не изолированный случай и что существует целая область инженерной работы, в которой аналогичные задачи проектирования можно решать методами вариационного исчисления. Мы обратились к другим аналогичным задачам и решили их этими методами. Но тем самым мы сделали из проектирования систем связи статистическую науку, раздел статистической механики. И действительно, понятия статистической механики вторгаются во все отрасли науки уже более ста лет. […]

… наша работа затруднялась отсутствием единства в литературе, где эти задачи трактовались, и отсутствием общей терминологии или хотя бы единого названия для этой области. После продолжительного обсуждения мы пришли к выводу, что вся существующая терминология так или иначе слишком однобока и не может способствовать в надлежащей степени развитию этой области. По примеру других учёных, нам пришлось придумать хотя бы одно искусственное неогреческое выражение для устранения пробела. Было решено назвать всю теорию управления и связи в машинах и живых организмах кибернетикой, от греческого kybernetes — «кормчий». Выбирая этот термин, мы тем самым признавали, что первой значительной работой по механизмам с обратной связью была статья о регуляторах, опубликованная Кларком Максвеллом в 1868 г., и что слово «governor», которым Максвелл обозначал регулятор, происходит от латинского искажения слова kybernetes. Мы хотели также отметить, что судовые рулевые машины были действительно одними из самых первых хорошо разработанных устройств с обратной связью. Несмотря на то что термин «кибернетика» появился только летом 1947 г., мы сочли удобным использовать его в ссылках, относящихся к более ранним периодам развития этой области науки. Приблизительно с 1942 г. развитие кибернетики проходило по нескольким направлениям. Сначала идеи совместной статьи Бигелоу, Розенблюта и Винера были изложены д-ром Розенблютом на совещании, проведённом фондом Джосайи Мейси в Нью-Йорке в 1942 г. Совещание было посвящено проблемам центрального торможения в нервной системе. На совещании присутствовал д-р Уоррен Мак-Каллох из Медицинской школы Иллинойского университета, уже давно поддерживавший связь с д-ром Розенблютом и со мною и интересовавшийся изучением организации коры головного мозга.

Примерно в это же время на сцену выступает фактор, который неоднократно появляется в истории кибернетики, — влияние математической логики. Если бы мне пришлось выбирать в анналах истории наук святого — покровителя кибернетики, то я выбрал бы Лейбница. Философия Лейбница концентрируется вокруг двух основных идей, тесно связанных между собой: идеи универсальной символики и идеи логического исчисления. Из этих двух идей возникли современный математический анализ и современная символическая логика. И как в арифметическом исчислении была заложена возможность развития его механизации от абака и арифмометра до современных сверхбыстрых вычислительных машин, так в calculus ratio-cinator (латинское выражение: «Исчисление умозаключений» – Прим. И.Л. Викентьева) Лейбница содержится в зародыше machina rationatrix — думающая машина. Сам Лейбниц, подобно своему предшественнику Паскалю, интересовался созданием вычислительных машин в металле. Поэтому совсем неудивительно, что тот же самый умственный толчок, который привёл к развитию математической логики, одновременно привёл к гипотетической, или действительной, механизации процессов мышления.

Всякое математическое доказательство, за которым мы можем следить, выразимо конечным числом символов. Эти символы, правда, могут быть связаны с понятием бесконечности, но связь эта такова, что ее можно установить за конечное число шагов. Так, когда в случае математической индукции мы доказываем теорему, зависящую от параметра n, мы доказываем её сначала для n = 0 и затем устанавливаем, что случай, когда параметр имеет значение n + 1, вытекает из случая, когда параметр имеет значение n.Тем самым мы убеждаемся в правильности теоремы для всех положительных значений параметра n. Более того, число правил действия в нашем дедуктивном механизме должно быть конечным, даже если оно кажется неограниченным из-за ссылки на понятие бесконечности. Ведь и само понятие бесконечности выразимо в конечных терминах. Короче говоря, как номиналистам (Гильберт), так и интуиционистам (Вейль) стало совершенно очевидно, что развитие той или иной математико-логической теории подчиняется ограничениям того же рода, что и работа вычислительной машины. Как мы увидим позже, можно даже интерпретировать с этой точки зрения парадоксы Кантора и Рассела».

Норберт Винер, Кибернетика, или Управление и связь в животном и машине, в Сб.: Информационное общество, М., «Аст», 2004 г., с.61 и 64-65.

Кафедра Теоретической Кибернетики

Что такое кибернетика?

Большая российская энциклопедия определяет кибернетику (от греч. κυβερνητηκη — искусство управления, от κυβερναω — правлю рулём, управляю) как науку об управлении, связи и переработке информации.

Кибернетические системы и информация

Основным объектом исследования в кибернетике являются так называемые кибернетические системы. Примерами кибернетических систем могут служить разного рода автоматические регуляторы в технике (например, автопилот или регулятор, обеспечивающий поддержание постоянной температуры в помещении), электронные вычислительные машины (ЭВМ или компьютеры), человеческий мозг, биологические популяции, человеческое общество. Кибернетические системы имеют рецепторы (датчики), воспринимающие сигналы из внешней среды и передающие их внутрь системы, а также входные и выходные каналы, по которым они обмениваются сигналами с внешней средой. Выходные сигналы системы передаются во внешнюю среду через эффекторы (исполнительные устройства). Поскольку каждая система сигналов, независимо от того, формируется она разумными существами или объектами и процессами неживой природы, несет в себе ту или иную информацию, то всякая кибернетическая система, может рассматриваться как преобразователь информации. Рассмотрение различных объектов живой и неживой природы как преобразователей информации или как систем, состоящих из элементарных преобразователей информации, составляет сущность так называемого кибернетического подхода к изучению этих объектов.

Мозг и компьютеры

Из числа сложных технических преобразователей информации наибольшее значение имеют компьютеры. Компьютеры обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.) могут быть выполнены компьютером после введения в него составленной должным образом программы. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг. Свойство универсальности современных компьютеров открывает возможность моделирования с их помощью любых других преобразователей информации, в том числе мыслительных процессов. Такая возможность ставит компьютеры в особое положение: с момента своего возникновения они представляют основное техническое средство, основной аппарат исследования, которым располагает кибернетика.

Кибернетика и управление

Целенаправленное изменение поведения кибернетических систем происходит при наличии управления. Основной задачей системы с управлением является такое преобразование поступающей в систему информации и формирование таких управляющих воздействий, при которых обеспечивается достижение (по возможности наилучшее) заданных целей управления. Примером может служить система автоматического регулирования температуры воздуха в помещении: специальный термометр-датчик измеряет температуру воздуха T, управляющая система сравнивает эту температуру с заданной величиной T и формирует управляющее воздействие -k(T-T) на задвижку, регулирующую приток тёплой воды в батареи центрального отопления. Знак минус при коэффициенте k означает, что регулирование происходит по закону отрицательной обратной связи, а именно: при увеличений температуры T выше установленного порога T приток тепла уменьшается, при её падении ниже порога — возрастает.

Отрицательная обратная связь необходима для обеспечения устойчивости процесса регулирования. Устойчивость системы означает, что при отклонении от положения равновесия (когда T=T) как в одну, так и в другую сторону система стремится автоматически восстановить это равновесие. При простейшем предположении о линейном характере зависимости между управляющим воздействием и скоростью притока тепла в помещение работа такого регулятора описывается дифференциальным уравнением dT/dt=-k(T-T), решением которого служит функция T=T+d exp(-kt), где d — отклонение температуры T от заданной величины T в начальный момент времени. Поскольку рассмотренная система описывается линейным дифференциальным уравнением 1-го порядка, она носит название линейной системы 1-го порядка. Более сложным поведением обладают линейные системы 2-го и более высоких порядков и особенно нелинейные системы. Возможны системы, в которых принцип программного управления комбинируется с регулированием в смысле поддержания заданного значения той или иной величины. Так, например, в описанный регулятор комнатной температуры может быть встроено программное устройство, меняющее значение регулируемого параметра. Задачей такого устройства может быть, скажем, поддержание температуры +20 o С в дневное время и снижение её до +16 o С в ночные часы. Функция простого регулирования перерастает здесь в функцию слежения за значением программно изменяемого параметра. В более сложных следящих системах задача состоит в поддержании (возможно более точном) некоторой фиксированной функциональной зависимости между множеством самопроизвольно меняющихся параметров и заданным множеством регулируемых параметров. Примером может служить система, непрерывно сопровождающая лучом прожектора маневрирующий произвольным образом самолет.

Читайте также  Что такое Майдан

В так называемых системах оптимального управления основной целью является поддержание максимального (или минимального) значения некоторой функции от двух групп параметров, называемой критерием оптимального управления. Параметры первой группы (внешние условия) меняются независимо от системы, параметры второй группы являются регулируемыми, т. е. их значения могут меняться под воздействием управляющих сигналов системы. Простейший пример оптимального управления снова даёт задача регулирования температуры комнатного воздуха при дополнительном условии учёта изменений его влажности. Величина температуры воздуха, дающая ощущение наибольшего комфорта, зависит от его влажности. Если влажность всё время меняется, а система может управлять лишь изменением температуры, то естественно в качестве цели управления поставить задачу поддержания температуры, которая давала бы ощущение наибольшего комфорта. Это и будет задача оптимального управления. Системы оптимального управления имеют большое значение в задачах управления экономикой. Если данных для обеспечения удовлетворительного качества системы недостаточно, можно строить так называемые адаптивные регуляторы, собирающие недостающую информацию в ходе работы системы и использующие ее для повышения качества своей работы.

Методы кибернетики

Кибернетика использует для исследования систем три принципиально различных метода. Два из них — математический анализ и физический эксперимент широко применяются и в других науках. Сущность первого метода состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью.

Одним из важнейших достижений кибернетики является разработка и широкое использование нового метода исследования, получившего название вычислительного (машинного) эксперимента, или математического моделирования. Смысл его состоит в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его математическим описанием, реализованным в компьютере. Огромное быстродействие современных компьютеров зачастую позволяет моделировать процессы в более быстром темпе, чем они происходят в действительности.

История кибернетики

Первым, кто применил термин КИБЕРНЕТИКА для управления в общем смысле, был по-видимому, древнегреческий философ Платон. Однако реальное становление КИБЕРНЕТИКИ как науки произошло много позже. Оно было предопределено развитием технических средств управления и преобразования информации. Ещё в средние века в Европе стали создавать так называемые андроиды — человекоподобные игрушки, представляющие собой механические, программно управляемые устройства. Первые промышленные регуляторы уровня воды в паровом котле и скорости вращения вала паровой машины были изобретены И. И. Ползуновым (Россия) и Дж. Уаттом (Англия) в 18 веке. Решающее значение для становления КИБЕРНЕТИКИ имело создание в 40-х гг. ХХ в. электронных вычислительных машин — ЭВМ или компьютеров (Дж. фон Нейман и др.). Благодаря ЭВМ возникли принципиально новые возможности для исследования и фактического создания действительно сложных управляющих систем. Оставалось объединить весь полученный к этому времени материал и дать название новой науке. Этот шаг был сделан американским математиком Норбертом Винером, опубликовавшим в 1948 свою знаменитую книгу «Кибернетика». Винер определил КИБЕРНЕТИКУ как «науку об управлении и связи в животном, машине и обществе». Стремительное развитие вычислительной техники породило большой интерес к кибернетике в 60-70е годы и ее бурное развитие во всем мире. В 80-90е годы термин КИБЕРНЕТИКА был частично вытеснен термином «Информатика», имеющим отношение прежде всего к компьютерам и обработке информации. Однако в последние годы КИБЕРНЕТИКА вновь стала популярной в связи с развитием Интернета (киберпространство) и робототехники (киборг — кибернетический организм — устройство с высокой степенью физического и интеллектуального взаимодействия человека и технических средств автоматики). Киборги, так же как и роботы-манипуляторы, находят все более широкое применение при управлении объектами в недоступных или опасных для жизни человека условиях.

Кибернетика в школе

На школьном уровне кибернетика понимается, в соответствии с ее методами, как наука, находящаяся на стыке математики, физики и информатики. При этом основные понятия кибернетики входят в школьный стандарт по курсу «Информатика».

Соответственно, олимпиада по кибернетике проводится как соревнование по решению задач, требующих знаний и навыков по перечисленным предметам школьного курса.

Значение слова кибернетика

Политическая наука: Словарь-справочник

(от греч. kybernetike — искусство управления)

наука об управлении, связи и переработке информации. Основной объект исследования — т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 1940-х гг. этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.

Современный экономический словарь. 1999

экономическая (от греч, kybernetike — искусство управления)

наука об общих закономерностях управления экономическими системами и об использовании информации в процессах управления.

Словарь Военных Терминов

наука о законах управления, связи и переработки информации. Основными объектами исследований К. являются процессы управления в технических, биологических, административных, социальных и других системах. Техническая основа К.— электронно-вычислительные машины и устройства. Военная К. является теоретической основой автоматизации управления войсками (силами) и боевыми средствами. Широко применяется в работе командиров и штабов на всех стадиях управления войсками (силами), при создании информационных систем, совершенствовании вооружения и подготовке военных кадров.

Начала Современного Естествознания. Тезаурус

(от греч. kybernetike — искусство управления) — наука об общих принципах управления, связи и переработки информации в машинах, живых организмах и обществе, наука о самоуправляющихся машинах, в частности о машинах (устройствах) с электронным управлением («электронный мозг»).

Толковый словарь русского языка (Алабугина)

Наука об общих законах получения, хранения, передачи и переработки информации.

* Заниматься кибернетикой *

|| прил. кибернетический, -ая, -ое.

* Кибернетический разум. *

Энциклопедический словарь

(от греч. kybernetike — искусство управления), наука об управлении, связи и переработке информации. Основной объект исследования — т. н. кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Современная кибернетика состоит из ряда разделов, представляющих собой самостоятельные научные направления. Теоретическое ядро кибернетики составляют информации теория, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления, теория распознавания образов. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники

Словарь Ожегова

КИБЕРНЕТИКА [ н э ], и, ж. Наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.

| прил. кибернетический, ая, ое.

Словарь Ефремовой

  1. ж.
    1. Научная дисциплина, изучающая общие закономерности процессов управления и передачи информации в организованных системах (в машинах, живых организмах и обществе).
    2. Учебный предмет, содержащий теоретические основы данной дисциплины.
    3. разг. Учебник, излагающий содержание данного учебного предмета.

Словарь экономических терминов

наука об общих закономерностях управления экономическими системами и об использовании информации в процессах управления.

Словарь медицинских терминов

наука об управлении и переработке информации в любых системах: биологических, технических, экономических, в коллективах людей и т. д.

Большая Советская Энциклопедия

«Кибернетика», научный журнал Академии наук УССР. Издается в Киеве с 1965, выходит 6 раз в год. Публикует оригинальные статьи по математическим и прикладным проблемам кибернетики, а также обзоры новейших достижений советской и зарубежной кибернетики. Тираж (1973) около 4200 экземпляров.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: